Skip to main content

A retrospective on transformation, growth control, and some peculiarities of lipid metabolism

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, 119

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 119))

  • 48 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alan D, Michell RH (1977) A comparison of the effects of PHA and of A23187 on the metabolism of glycero lipids in small lymphocytes. Biochem J 164:389–397

    Google Scholar 

  • Berridge MY, Irvine RF (1984) Inositoltriphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Google Scholar 

  • Black PH (1980) Shedding from the cell surface of normal and cancer cells. Adv Cancer Res 32:76–199

    Google Scholar 

  • Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24:175–184

    Google Scholar 

  • Diringer H (1973) Phospholipid metabolism in mammalian cells: evidence for a new biosynthetic pathway of phosphatidylserine. Z Physiol Chem 354:577–582

    Google Scholar 

  • Diringer H, Friis RR (1977) Changes in phosphatidylinositol metabolism correlated to growth state of normal and Rous sarcoma virus-transformed Japanese quail cells. Cancer Res 37:2979–2984

    Google Scholar 

  • Diringer H, Koch MA (1973) Biosynthesis of spingomyelin. Transfer of phosphorylcholine from phosphtidylcholine to erythro-ceramide in a cell-free system. Z Physiol Chem 354:1661–1665

    Google Scholar 

  • Diringer H, Marggraf WD, Koch MA, Anderer FA (1972) Evidence for a new biosynthetic pathway of sphingomyelin in SV40-transformed mouse cells. Biochem Biophys Res Commun 47:1345–1352

    Google Scholar 

  • Diringer H, Koch-Kallnbach ME, Friis RR (1977) Quantitative determination of myoinositol, inositol-1-phosphate, inositol cyclic 1: 2 phosphate and glycerylphosphoinositol in normal and Rous-sarcoma-virus-transformed quail fibroblasts under different growth conditions. Eur J Biochem 81:551–555

    Google Scholar 

  • Durell J, Garland JT, Riedel RO (1969) Acetylcholine action: biochemical aspects. Science 165:862–866

    Google Scholar 

  • Esko JD, Raetz CRH (1983) Synthesis of phospholipids in animal cells. In: Boyer PD (ed) The enzymes XVI. Lipid Enzymology. Academic, New York, pp 207–253

    Google Scholar 

  • Fisher DB, Mueller GC (1968) An early alteration in the phospholipid metabolism of lymphocytes by PHA. Proc Natl Acad Sci USA 60:1396–1402

    Google Scholar 

  • Hakomori SI (1973) Gylcolipids of tumor cell membrane. Adv Cancer Res 18:265–315

    Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    Google Scholar 

  • Kikkawa U, Nishizuka Y (1986) Protein kinase C. In: Boyer PD (ed) The enzymes XVII. Control by Phosphorylation, Part A. Academic, New York, pp 167–189

    Google Scholar 

  • Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem 222:193–214

    Google Scholar 

  • Kishimoto Y (1983) Sphingolipid formation. In: Boyer PD (ed) The enzymes XVI. Lipid Enzymology. Academic, New York, pp 357–407

    Google Scholar 

  • Koch MA, Diringer H (1973a) A difference in the breakdown of phosphatidylinositol in normal and SV40-transformed mouse fibroblasts. Biochem Biophys Res Commun 55:305–311

    Google Scholar 

  • Koch MA, Diringer H (1973b) A difference in the breakdown of phospholipids depending on cell population density. Biochem Biophys Res Commun 51:967–971

    Google Scholar 

  • Koch MA, Diringer H (1973c) A difference in the breakdown of phosphatidylinositol in normal and SV40-transformed mouse fibroblasts. Biochem Biophys Res Commun 55:305–311

    Google Scholar 

  • Koch MA, Diringer H (1974) Isolation of cyclic inositol-1,2-phosphate from mammalian cells and a probable function of phosphatidylinositol turnover. Biochem Biophys Res Commun 58:361–367

    Google Scholar 

  • Kuge O, Nishijima M, Akamatsu Y (1986) Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors. J Biol Chem 261:5795–5798

    Google Scholar 

  • Lapetina EG, Michell RH (1973) Phosphatidylinositol metabolism in cells receiving extracellular stimulation. FEBS Lett 31:1–10

    Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    Google Scholar 

  • Michell RH (1982) Inositol metabolism in dividing and differentiating cells. Cell Calcium 3:429–440

    Google Scholar 

  • Nicolau C, Hildenbrand K, Reimann A, Johnson SM, Vaheri A, Friis RR (1978) Membrane lipid dynamics and density dependent growth control in normal and transformed cells. Exp Cell Res 113:63–73

    Google Scholar 

  • Nishizuka Y (1984) The role of proteine kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698

    Google Scholar 

  • Pasternak CA, Bergeron JJM (1970) Turnover of mammalian phospholipids. Stable and unstable components in neoplastic mast cells. Biochem J 119:473–480

    Google Scholar 

  • Sandermann H Jr (1978) Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515:209–237

    Google Scholar 

  • Scribney M, Kennedy EP (1958) The enzymatic synthesis of sphingomyelin. J Biol Chem 233:1315–1322

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Google Scholar 

  • Ullman MD, Radin NS (1974) The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem 249:1506–1512

    Google Scholar 

  • Voelker DR, Frazier JL (1986) Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthetase activity. J Biol Chem 261:1002–1008

    Google Scholar 

  • Weber JM, Friis RR (1979) Dissociation of transformation parameters using temperature-conditional mutants of Rous sarcoma virus. Cell 16:25–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Diringer, H., Friis, R. (1992). A retrospective on transformation, growth control, and some peculiarities of lipid metabolism. In: Reviews of Physiology, Biochemistry and Pharmacology, 119. Reviews of Physiology, Biochemistry and Pharmacology, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540551921_1

Download citation

  • DOI: https://doi.org/10.1007/3540551921_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55192-8

  • Online ISBN: 978-3-540-46770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics