A note on the ratio function in DOL systems

Extended abstract
  • Mária Král'ová
Chapter 3 Biologically Motivated Structures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 281)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HERMAN G.T., VITÁNYI P.M.B.: Growth functions associated with biological development, Amer. Math. Monthly 83 (1976) 1–15Google Scholar
  2. [2]
    HROMKOVIČ J.: Ratio function analysis, Computers and Artificial Intelligence 4 (1985) 2, 137–142Google Scholar
  3. [3]
    HROMKOVIČ J., KELEMENOVÁ A.: On kinetic models of cell population, Proc. of The 3rd Int. Symp. of System Simulation in Biology and Medicine, Prague, 1982, Microfishe No 735Google Scholar
  4. [4]
    KELEMENOVÁ A.: Levels in L-systems, Mathematica Slovaca 33 (1983) 1, 87–97Google Scholar
  5. [5]
    KRÁĽOVÁ M.: Constant ratio-function of Lindenmayer systems, Math. Slovaca 35 (1985) 3, 283–294Google Scholar
  6. [6]
    LINDENMAYER A.: Mathematical models of cellular interactions in development I, II, Journal of Theoretical Biology, 18 (1968) 280–299, 300–315Google Scholar
  7. [7]
    LINDENMAYER A., ROZENBERG G.: Automata, Languages, Development, North Holland, Amsterdam 1976Google Scholar
  8. [8]
    ROZENBERG G., SALOMAA A.: The mathematical Theory of L-systems, Academic Press, New York 1980Google Scholar
  9. [9]
    SZILARD A.: Growth functions of Lindenmayer systems, Univ. of Western Ontario Computer Science Department Technical Report No 4, London, Canada 1971Google Scholar
  10. [10]
    VITÁNYI P.M.B.: Lindenmayer Systems: Structure, Languages and Growth functions, Mathematisch Centrum, Amsterdam 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Mária Král'ová
    • 1
  1. 1.Institute of Computer ScienceComenius UniversityBratislavaCzechoslovakia

Personalised recommendations