The loop reactor for cultivating yeast on n-paraffin substrate

  • Reinhold Seipenbusch
  • Heinz Blenke
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 15)

Abstract

For economic mass production by a microbial process, e.g., of single cell protein from a petroleum fraction it is important to find a type of reactor that meets the following requirements:
  • -large mass-transfer rate for oxygen and substrate at low energy input;

  • -the reactor must be capable of being constructed and operated in large units;

  • -a simple and robust design, which is characterized by low construction costs, easy to keep sterile, low maintenance costs, and a high on-stream availability.

The loop reactor, especially the jet loop reactor, is examined with regard to its suitability as a bioreactor; in this context the O2 transfer, the substrate transfer, the necessary energy input and the flow pattern are dealt with. The optimal operating conditions (minimum energy input) regarding O2 conversion and jet power input under consideration of a favorable flow pattern are presented. It is shown that the controllability of the reactor meets the requirements of the culture.

As an example of economically optimal SCP production, the cultivation of yeast on n-paraffin substrate is analysed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. 1.
    Blenke, H.: Adv. Biochem. Eng. 13, 121 (1979)Google Scholar
  2. 2.
    Blenke, H., Hirner, W.: VDI-Berichte Nr. 218, 549 (1974)Google Scholar
  3. 3.
    Frank-Kamenetski: Diffusion and heat transfer in chemical kinetics. New York: Plenum Press 1969Google Scholar
  4. 4.
    DOS 24 36 793 v. 31. 4. 1974Google Scholar
  5. 5.
    Nagel, O., Kürten, H., Sinn, R.: Chem.-Ing.-Techn. 44, 899 (1972)Google Scholar
  6. 6.
    Zlokarnik, M.: Adv. Biochem. Eng. 8, 133 (1978)Google Scholar
  7. 7.
    Blenke, H.: Chem.-Ing.-Techn. 39, 109 (1967)Google Scholar
  8. 8.
    DOS 26 03 769 v. 31. 1. 1976Google Scholar
  9. 9.
    Hirner, W.: Stoffübergang und Stoffübergangsfläche in Gas/Flüssigkeits-Strahlreaktoren. Dissert. University Stuttgart 1974Google Scholar
  10. 10.
    DOS 25 39 502 v. 5. 9. 1975Google Scholar
  11. 11.
    Blenke, H., Bohner, K., Schuster, S.: Chem.-Ing.-Techn. 37, 289 (1965)Google Scholar
  12. 12.
    Blenke, H., Bohner, K., Hirner, W.: Chem.-Ing.-Techn. 42, 479 (1970)Google Scholar
  13. 13.
    DOS 26 03 668 v. 31. 1. 1976Google Scholar
  14. 14.
    Mateles, R.I.: Biotech. Bioeng. 8, 581 (1971)Google Scholar
  15. 15.
    Cooney, C, Wang, D.I.C., Mateles, R.I.: Biotech. Bioeng. 11, 269 (1969)Google Scholar
  16. 16.
    Abbott, B.J., Clamen, A.: Biotech. Bioeng. 15, 117 (1973)Google Scholar
  17. 17.
    VDI-Wärmeatlas, Blatt Db 1, VDI-Verlag, Düsseldorf 1974, 2. Aufl.Google Scholar
  18. 18.
    van Krevelen, D.W., Hoftyzer, P.J.: Chim. Ind. XXO., Congr. Int. Chim. Ind. 168 (1948)Google Scholar
  19. 19.
    Reule, W.: Messung des flüssigkeitsseitigen physikalischen Stoffübergangskoeffizienten für O2, in Mikroorganismen-Kulturlösungen. Diplomarbeit Univers. Stuttgart 1976Google Scholar
  20. 20.
    Deutsche Einheitsverfahren zur Abwasser-, Wasser-und Schlammuntersuchung G 2, 3. Aufl. Weinheim: Verlag Chemie 1960Google Scholar
  21. 21.
    Rattcliff, G.A., Holderoft, J.G.: Trans. Instn. Chem. Eng. 41, 315 (1963)Google Scholar
  22. 22.
    Blakebrough, N.: Pure. Appl. Chem. 36, 305 (1973)Google Scholar
  23. 23.
    Levenspiel, O.: Chemical Reaction Eng., 2nd ed. New York: John Wiley Sons Inc. 1972Google Scholar
  24. 24.
    Calderbank, P.H.: Chem. Eng., Oct. CE, 209 (1967)Google Scholar
  25. 25.
    Reith, T.: Physical aspects of bubble dispersions in liquids. Dissert. TH Delft 1968Google Scholar
  26. 26.
    Danckwerts, P.V.: Gas-Liquid Reactions, Mc. Graw Hill 1970Google Scholar
  27. 27.
    Zlokarnik, H.: Chem.-Ing.-Techn. 47, 281 (1975)Google Scholar
  28. 28.
    Blenke, H., Bohner, K.: Verfahrenstechnik 6, 50 (1972)Google Scholar
  29. 29.
    Bohner, K.: Gasgehalt und Flüssigkeitsumwälzung im Schlaufenreaktor. Dissert. Univers. Stuttgart 1971Google Scholar
  30. 30.
    Lehnert, J.: Verfahrenstechnik 6, 1 (1972)Google Scholar
  31. 31.
    Lehnert, J.: Berechnung von Mischvorgängen in schlanken Schlaufenapparaten. Dissert. Univers. Stuttgart 1972Google Scholar
  32. 32.
    Seipenbusch, R., Blenke, H., Birckenstaedt, J.W., Schindler, F.: 5. Intern. Ferm. Symp., Abstr. 4.09, Berlin 1976Google Scholar
  33. 33.
    Chakravatry, M., Singh, H.D., Daruah, J.N.: Biotech. Bioeng. 17, 399 (1975)Google Scholar
  34. 34.
    Einsele, A., Blanch, H.W., Fiechter, A.: Biotech. Bioeng., Symp. Nr. 4, 455 (1973)Google Scholar
  35. 35.
    DOS 25 41 202 v. 16. 9. 1975Google Scholar
  36. 36.
    Seipenbusch, R., Birckenstaedt, J.W., Schindler, F.: 1. Symp. Mikrobielle Proteingew. Weinheim: Verlag Chemie 1975Google Scholar
  37. 37.
    Aiba, S., Haung, K.L., Moritz, V., Someya, J.: J. Ferm. Tech. 47, 211 (1969)Google Scholar
  38. 38.
    Einsele, A., Schneider, H., Fiechter, A.: Proc. 4. Internat. Symp. Yeasts, Part I, B 8, 91, Vienna 1974Google Scholar
  39. 39.
    Birckenstaedt, J.W., Schindler, F.: 3. Sympos. Techn. Mikrobiology, p. 307, Berlin 1973Google Scholar
  40. 40.
    DOS 23 48 793 v. 28. 9. 1973Google Scholar
  41. 41.
    Stein, W.: Chem.-Ing.-Techn. 40, 829 (1968)Google Scholar
  42. 42.
    Stein, W.: Beitrag zur Berechnung von Schlaufenreaktoren. Dissert. Univers. Stuttgart 1968Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Reinhold Seipenbusch
    • 1
  • Heinz Blenke
    • 2
  1. 1.VEBA-Chemie AG, Werksgruppe HerneHerne 2West Germany
  2. 2.Institut für Chemische VerfahrenstechnikUniversität StuttgartStuttgart 1West Germany

Personalised recommendations