Thermal blooming in the atmosphere

  • J. L. Walsh
  • P. B. Ulrich
Part of the Topics in Applied Physics book series (TAP, volume 25)


Laser Beam Gaussian Beam Geometric Optic Approximation Heating Profile Inversion Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    R. C. C. Leite, R. S. Moore, J. R. Whinnery: Appl. Phys. Lett. 5, 141 (1964)Google Scholar
  2. 7.2
    P. B. Ulrich: “Numerical Methods in High Power Laser Propagation”, AGARD Conference Proceedings No. 183, Optical Propagation in the Atmosphere, Paper No. 31. 27-31 October 1975 (National Technical Information Service, Springheld, Va. 22151)Google Scholar
  3. 7.3
    A. C. Melissinos, F. Lobkowicz: Physics for Scientists and Engineers, Vol. 1 (W. B. Saunders Company, Philadelphia 1975) Chaps. 14–16Google Scholar
  4. 7.4
    J. D. Jackson: Classical Electrodynamics, (Wiley and Sons, New York, London, Sydney 1962) p. 618Google Scholar
  5. 7.5
    H. Kogelnik, T. Li: Proc. IEEE 54, 1312 (1966); Appl. Opt. 5, 1550 (1966)Google Scholar
  6. 7.6
    M. Born, E. Wolf: Principles of Optics, 4th ed. (Pergamon Press, New York 1970)Google Scholar
  7. 7.7
    A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi: Tables of Integral Transforms, Vol. I (McGraw-Hill, New York 1954) p. 11Google Scholar
  8. 7.8
    P. M. Morse, H. Feshbach: Methods of Theoretical Physics, Part II (McGraw-Hill, New York 1953) p. 1092Google Scholar
  9. 7.9
    B. B. Baker, E. T. Copson: The Mathematical Theory of Huygenś Principle, 2nd ed. (Clarendon Press, Oxford 1950) pp. 23–26Google Scholar
  10. 7.10
    Yu, A. Kravtsov, Z. I. Feizulin: Izv. VUZ, Radiofiz. 12, 886 (1969); [English transi. Radiophys. Quant. Electron. 12, 706 (1969)]Google Scholar
  11. 7.11
    R. F.Lutomirski, H. T. Yura: Appl. Opt. 10, 1652 (1971)Google Scholar
  12. 7.12
    L. D. Landau, E. M. Lifshitz: Fluid Mechanics, Engl. transl. (Pergamon Press, London 1959) Chap. IGoogle Scholar
  13. 7.13
    J. Wallace, M. Camac: J. Opt. Soc. Am. 60, 1587 (1970)Google Scholar
  14. 7.14
    J. N. Hayes: Thermal Blooming of Laser Beams in Gases, Naval Res. Lab. Rept. 7213, AD 720508 (Feb. 11, 1971)Google Scholar
  15. 7.15
    E. L. Ince: Ordinary Differential Equations (Dover Publ., New York 1956)Google Scholar
  16. 7.16
    G. N. Watson: A Reatise on the Theory of Bessel Functions (Cambridge University Press 1966) p. 394Google Scholar
  17. 7.17
    M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, DC 1964) pp. 297, 298, 319Google Scholar
  18. 7.18
    I. N. Sneddon: Fourier Transforms (McGraw-Hill, New York, Toronto, London 1951)Google Scholar
  19. 7.19
    A. D. Wood, M. Camac, E. T. Gerry: Appl. Opt. 10, 1877 (1971)Google Scholar
  20. 7.20
    J.B. Keller:“Proceedings of Symposia inApplied Mathematics”, Vol. XIII(American Mathematical Society, Providence 1962) pp. 230, 231Google Scholar
  21. 7.21
    P. V. Avizonis, C. B. Hogge, R. R. Butts, J. R. Kenemuth: Appl. Opt. 11, 554 (1972)Google Scholar
  22. 7.22
    P. G. Bergmann: Phys. Rev. 70, 486 (1946)Google Scholar
  23. 7.23
    M. Kline: Comm. Pure Appl. Math. 14,473 (1961)Google Scholar
  24. 7.24
    A. H. Aitken, J. N. Hayes, P. B. Ulrich: Appi. Opt. 12, 193 (1973)Google Scholar
  25. 7.25
    P. B. Ulrich: “A Wave Optics Calculation of Pulsed Laser Propagation in Gases”, Naval Res. Lab. Rept. 7413, NTIS No. AD 745739 (June 7, 1972)Google Scholar
  26. 7.26
    A. Sommerfeld: Partial Differential Equations in Physics (Academic Press, New York 1964)Google Scholar
  27. 7.27
    R. D. Richtmyer, K. W. Morton: Difference Methods for Initial-Value Problems, 2nd ed. (Wiley-Interscience, New York 1967)Google Scholar
  28. 7.28
    R. Courant, D. Hilbert: Methods of Mathematical Physics, Vol. II (Wiley-Interscience, New York 1962)Google Scholar
  29. 7.29
    T.N.E. Greville: Theory and Applications of Spline Functions (Academic Press, New York, London 1969)Google Scholar
  30. 7.30
    J. Wallace,Jr., J.Q.Lilly: J. Opt. Soc. Am. 64, 1651 (1974)Google Scholar
  31. 7.31
    W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Maling, D. E. Nelson, C. M. Rades, P. D. Welch: “What is the Fast Fourier Transform?”, G-AE Subcommittee on Measurement Concepts, IEEE Trans. AE-15 (2), 45 (1967)Google Scholar
  32. 7.32
    P.J. Lynch, D. L. Bullock: “An Integral-Equation Formulation of Thermal Blooming”; TRW Rept., TRW Systems Group, 1 Space Park, Redondo Beach, CA, 90278 (14. August 1974)Google Scholar
  33. 7.33
    R. F. Lutomirski, W. L. Woodie, A. R. Hines, M. A. Dore: “Maritime Aerosol Effects on High-Energy Laser Propagation”; Pacific-Sierra Res. Corp. Rept. 510-S (September 1975) p. 54Google Scholar
  34. 7.34
    P. L. Kelley: Phys. Rev. Lett. 15, 1005 (1965)Google Scholar
  35. 7.35
    H. F. Harmuth: J. Math. Phys. 36, 269 (1957)Google Scholar
  36. 7.36
    J. Crank, P. Nicolson: Comb. Phil. Soc. Proc. 43, 50 (1947)Google Scholar
  37. 7.37
    D. W.Peaceman, H. H. Rockford: J. Soc. Indust. Appl. Math. 3, 28 (1955)Google Scholar
  38. 7.38
    J.DouglasJr.: J. Soc. Indust. Appl. Math. 3, 42 (1955)Google Scholar
  39. 7.39
    J. Douglas,Jr., H. H. Rockford: Trans. Am. Math. Soc. 82, 421 (1956)Google Scholar
  40. 7.40
    G. E. Forsyth, W. R. Watow: Finite Difference Methods for Partial Differential Equations (Wiley and Sons, New York, London 1967)Google Scholar
  41. 7.41
    H. J. Breaux: “AnAnalysis of Mathematical Transformations and a Comparison of Numerical Techniques for Computation of High Energy cw Laser Propagation in an Inhomogeneous Medium”, U.S. Army Ballistic Res. Lab. Rept. 1723 (June 1974)Google Scholar
  42. 7.42
    J. A. Fleck,Jr., J. R. Morris, M.D. Feit: “Time Dependent Propagation of High Energy Laser Beams through the Atmosphere”, Lawrence Livermore Lab. Rept. UCRL-51826 (June 2, 1975); Appl. Phys. 10, 129 (1976); 14, 99 (1977)Google Scholar
  43. 7.43
    P. B. Ulrich: “PROP-1: An Efficient Implicit Algorithm for Calculating Nonlinear Scalar Wave Propagation in the Fresnel Approximation”; Naval Res. Lab. Rept. 7706 (May 29, 1974)Google Scholar
  44. 7.44
    L. C. Bradley, J. Herrmann: J. Opt. Soc. Am. 61, 668 (1971)Google Scholar
  45. 7.45
    L. C. Bradley, J. Herrmann: “Numerical Calculation of Light Propagation”, MIT Lincoln Lab. Rept. LTP-10 (July 12, 1971)Google Scholar
  46. 7.46
    L. C. Bradley, J. Herrmann: “Notes on the Lincoln Laboratory Propagation Code” (1974) (unpublished notes)Google Scholar
  47. 7.47
    P. B. Ulrich, J. Wallace,Jr.: J. Opt. Soc. Am. 63, 8 (1973)Google Scholar
  48. 7.48
    P. B. Ulrich: “A Numerical Calculation of Thermal Blooming of Pulsed, Focused Laser Beams”, Naval Res. Lab. Rept. 7382 (December 30, 1971)Google Scholar
  49. 7.49
    P. J. Berger, P. B. Ulrich, J. T. Ulrich, F. G. Gebhardt: Appl. Opt. 16, 345 (1977)Google Scholar
  50. 7.50
    I. N. Sneddon: Fourier Ransforms (McGraw-Hill, New York 1951)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. L. Walsh
  • P. B. Ulrich

There are no affiliations available

Personalised recommendations