Skip to main content

Current State-of-Art in the Guerbet-Type β-Alkylation of Secondary Alcohols with Primary Alcohols Catalyzed by Complexes Based on 3d Metals

  • Chapter
  • First Online:
Dehydrogenation Reactions with 3d Metals

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 73))

  • 102 Accesses

Abstract

Development of greener, sustainable, and atom-economical methods for the formation of Carbon–Carbon bonds leading to versatile fuels and value-added chemicals has been an area of recent global research. For example, the methodology for C–C bond formation proves to be useful for the valorization of ethanol to butanol which acts as an alternative fuel. This methodology can be further applied in natural product synthesis including but not limited to synthesis of several cholesterol and flavan derivatives. This greatly negates the typical disadvantages of classical coupling of alkyl halides that generally are accompanied by the formation of hazardous waste. Transition metal-catalyzed Guerbet-type coupling of alcohols is a promising route to new C–C bonds as they are greener and atom-economical with water as the sole by-product. Typically, these reactions follow the sequence of catalytic dehydrogenation to carbonyl compounds, aldol condensation and a tandem catalytic hydrogenation of the resulting α,β-unsaturated carbonyl compound. Barring the large library of precious metal (Ru, Ir, Rh, and Pd) based homogeneous catalytic systems that accomplish the β-alkylation of alcohols, there are only a few reports on corresponding homogeneous catalytic systems derived from 3d metals and are mainly based on Mn, Fe, Co, Cr, and Ni. In this chapter, an attempt has been made to shed light on the current state-of-art in the 3d-metal catalyzed β-alkylation of secondary alcohols with primary alcohols from a synthetic and mechanistic point-of-view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeJong W, Wallack L (1992) Health. Educ Q 19:429–442

    Google Scholar 

  2. Casswell S, Thamarangsi T (2009) Lancet 373:2247–2257

    Article  PubMed  Google Scholar 

  3. Wang Q, Wu K, Yu Z (2016) Organometallics 35:1251–1256

    Article  Google Scholar 

  4. Makarov IS, Madsen R (2013) J Org Chem 78:6593–6598

    Article  PubMed  Google Scholar 

  5. Xu Q, Chen J, Liu Q (2013) Adv Synth Catal 355:697–704

    Article  Google Scholar 

  6. Xu Q, Chen J, Tian H, Yuan X, Li S, Zhou C, Liu J (2014) Angew Chem Int Ed 53:225–229

    Article  Google Scholar 

  7. Allen LJ, Crabtree RH (2010) Green Chem 12:1362

    Article  Google Scholar 

  8. Irrgang T, Kempe R (2019) Chem Rev 119:2524–2549

    Article  PubMed  Google Scholar 

  9. Li Q, Fan S, Sun Q, Tian H, Yu X, Xu Q (2012) Org Biomol Chem 10:2966–2972

    Article  PubMed  Google Scholar 

  10. Feng SL, Liu CZ, Li Q, Yu XC, Xu Q (2011) Chin Chem Lett 22:1021–1024

    Article  Google Scholar 

  11. Liu C, Liao S, Li Q, Feng S, Sun Q, Yu X, Xu Q (2011) J Org Chem 76:5759–5773

    Article  PubMed  Google Scholar 

  12. Sahoo AR, Lalitha G, Murugesh V, Bruneau C, Sharma GVM, Suresh S, Achard M (2017) J Org Chem 82:10727–10731

    Article  PubMed  Google Scholar 

  13. Cho CS, Kim BT, Kim H-S, Kim T-J, Shim SC (2003) Organometallics 22:3608–3610

    Article  Google Scholar 

  14. Ruiz-Botella S, Peris E (2015) Chem Eur J 21:15263–15271

    Article  PubMed  Google Scholar 

  15. Jiménez MV, Fernández-Tornos J, Modrego FJ, Pérez-Torrente JJ, Oro LA (2015) Chem Eur J 21:17877–17889

    Article  PubMed  Google Scholar 

  16. Xu C, Goh LY, Pullarkat SA (2011) Organometallics 30:6499–6502

    Article  Google Scholar 

  17. Segarra C, Mas-Marzá E, Mata JA, Peris E (2011) Adv Synth Catal 353:2078–2084

    Article  Google Scholar 

  18. Gong X, Zhang H, Li X (2011) Tetrahedron Lett 52:5596–5600

    Article  Google Scholar 

  19. Gnanamgari D, Sauer ELO, Schley ND, Butler C, Incarvito CD, Crabtree RH (2009) Organometallics 28:321–325

    Article  Google Scholar 

  20. da Costa AP, Sanaú M, Peris E, Royo B (2009) Dalton Trans:6960–6966. https://doi.org/10.1039/B901195A

  21. Pontes da Costa A, Viciano M, Sanaú M, Merino S, Tejeda J, Peris E, Royo B (2008) Organometallics 27:1305–1309

    Article  Google Scholar 

  22. Gnanamgari D, Leung CH, Schley ND, Hilton ST, Crabtree RH (2008) Org Biomol Chem 6:4442–4445

    Article  PubMed  Google Scholar 

  23. K.-i. Fujita, C. Asai, T. Yamaguchi, F. Hanasaka, R. Yamaguchi, Org Lett 7 (2005) 4017–4019

    Google Scholar 

  24. Satyanarayana P, Reddy GM, Maheswaran H, Kantam ML (2013) Adv Synth Catal 355:1859–1867

    Article  Google Scholar 

  25. Zhang C, Zhao J-P, Hu B, Shi J, Chen D (2019) Organometallics 38:654–664

    Article  Google Scholar 

  26. Roy BC, Debnath S, Chakrabarti K, Paul B, Maji M, Kundu S (2018) Org Chem Front 5:1008–1018

    Article  Google Scholar 

  27. Roy BC, Chakrabarti K, Shee S, Paul S, Kundu S (2016) Chem Eur J 22:18147–18155

    Article  PubMed  Google Scholar 

  28. Shee S, Paul B, Panja D, Roy BC, Chakrabarti K, Ganguli K, Das A, Das GK, Kundu S (2017) Adv Synth Catal 359:3888–3893

    Article  Google Scholar 

  29. Chakrabarti K, Paul B, Maji M, Roy BC, Shee S, Kundu S (2016) Org Biomol Chem 14:10988–10997

    Article  PubMed  Google Scholar 

  30. Prades A, Viciano M, Sanaú M, Peris E (2008) Organometallics 27:4254–4259

    Article  Google Scholar 

  31. Kose O, Saito S (2010) Org Biomol Chem 8:896–900

    Article  PubMed  Google Scholar 

  32. Liu T, Wang L, Wu K, Yu Z (2018) ACS Catal 8:7201–7207

    Article  Google Scholar 

  33. El-Sepelgy O, Matador E, Brzozowska A, Rueping M (2019) ChemSusChem 12:3099–3102

    Article  PubMed  Google Scholar 

  34. Freitag F, Irrgang T, Kempe R (2017) Chem Eur J 23:12110–12113

    Article  PubMed  Google Scholar 

  35. Yang J, Liu X, Meng DL, Chen HY, Zong ZH, Feng TT, Sun K (2012) Adv Synth Catal 354:328

    Article  Google Scholar 

  36. Zhang M-J, Li H-X, Young DJ, Li H-Y, Lang J-P (2019) Org Biomol Chem 17:3567–3574

    Article  PubMed  Google Scholar 

  37. Liao S, Yu K, Li Q, Tian H, Zhang Z, Yu X, Xu Q (2012) Org Biomol Chem 10:2973–2978

    Article  PubMed  Google Scholar 

  38. Gladiali S, Alberico E (2006) Chem SocRev 35:226–236

    Google Scholar 

  39. Genç S, Arslan B, Gülcemal S, Günnaz S, Çetinkaya B, Gülcemal D (2019) J Org Chem 84:6286–6297

    Article  PubMed  Google Scholar 

  40. Kaur M, Din Reshi NU, Patra K, Bhattacherya A, Kunnikuruvan S, Bera JK (2021) Chem Eur J 27:10737–10748

    Article  PubMed  Google Scholar 

  41. Musa S, Ackermann L, Gelman D (2013) Adv Synth Catal 355:3077–3080

    Article  Google Scholar 

  42. Czap A, Heinemann FW, van Eldik R (2004) Inorg Chem 43:7832–7843

    Article  PubMed  Google Scholar 

  43. Che C-M, Ho C, Lau T-C (1991) J Chem Soc Dalton Trans:1901–1907. https://doi.org/10.1039/DT9910001901

  44. Wei C, He Y, Shi X, Song Z (2019) Coord Chem Rev 385:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  45. Busschaert N, Wenzel M, Light ME, Iglesias-Hernández P, Pérez-Tomás R, Gale PA (2011) J Am Chem Soc 133:14136–14148

    Article  PubMed  PubMed Central  Google Scholar 

  46. Du W, Wang Q, Wang L, Yu Z (2014) Organometallics 33:974–982

    Article  Google Scholar 

  47. Prakasham AP, Ta S, Dey S, Ghosh P (2021) Dalton Trans 50:15640–15654

    Article  PubMed  Google Scholar 

  48. Das K, Yasmin E, Das B, Srivastava HK, Kumar A (2020) Catal. Sci Technol 10:8347–8358

    Google Scholar 

  49. Das K, Kathuria L, Jasra RV, Dhole S, Kumar A (2023) Catal Sci Technol 13:1763–1776

    Article  Google Scholar 

  50. Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A (2022) Catal Sci Technol 12:4753–4762

    Article  Google Scholar 

  51. Miao Y, Samuelsen SV, Madsen R (2021) Organometallics 40:1328–1335

    Article  Google Scholar 

  52. Su P, Chen Z, Ni J, Yang Z, Li Y, Ke Z (2023) ACS Catal 13:12481–12493

    Article  Google Scholar 

  53. Bisarya A, Jasra RV, Kumar A (2023) Organometallics 42:1818–1831

    Article  Google Scholar 

  54. Pandey B, Xu S, Ding K (2021) Organometallics 40:1207–1212

    Article  Google Scholar 

  55. Pandey B, Xu S, Ding K (2019) Org Lett 21:7420–7423

    Google Scholar 

  56. Nandi PG, Kumar P, Kumar A (2022) Catal. Sci Technol 12:1100–1108

    Google Scholar 

  57. Nandi PG, Thombare P, Prathapa SJ, Kumar A (2022) Organometallics 41:3387–3398

    Article  Google Scholar 

  58. Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier

    Google Scholar 

  59. Ananikov VP (2015) ACS Catal 5:1964–1971

    Article  Google Scholar 

  60. Babu R, Subaramanian M, Midya SP, Balaraman E (2021) Org Lett 23:3320–3325

    Article  PubMed  Google Scholar 

  61. Arora V, Narjinari H, Kumar A (2021) Organometallics 40:2870–2880

    Article  Google Scholar 

  62. Bains AK, Biswas A, Adhikari D (2022) Adv Synth Catal 364:47–52

    Article  Google Scholar 

  63. Balakrishnan V, Ganguly A, Rasappan R (2022) Org Lett 24:4804–4809

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshai Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narjinari, H., Bisarya, A., Arora, V., Nandi, P.G., Das, K., Kumar, A. (2023). Current State-of-Art in the Guerbet-Type β-Alkylation of Secondary Alcohols with Primary Alcohols Catalyzed by Complexes Based on 3d Metals. In: Sundararaju, B. (eds) Dehydrogenation Reactions with 3d Metals. Topics in Organometallic Chemistry, vol 73. Springer, Cham. https://doi.org/10.1007/3418_2023_112

Download citation

Publish with us

Policies and ethics