Skip to main content

Hydrosilylation Catalysis for One-Pot Synthesis

  • Chapter
  • First Online:
Perspectives of Hydrosilylation Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 72))

  • 137 Accesses

Abstract

One-pot synthesis, including the hydrosilylation of alkenes, alkynes, carbonyl compounds, CO2, and other molecules, enables the facile synthesis of final products with high efficiency. This chapter describes recent advances in three types of one-pot syntheses triggered by hydrosilylation: (i) one-pot synthesis with Si as a leaving group, (ii) one-pot synthesis with Si as an intersection, and (iii) other successive reactions, including hydrosilylation and functionalization reactions. Synthetic utilities such as the substrate scope and homogeneous/heterogeneous catalysis with mechanistic aspects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall N (1994) Chemists clean up synthesis with one-pot reactions. Science 266:32

    CAS  PubMed  Google Scholar 

  2. Hayashi Y (2016) Pot economy and one-pot synthesis. Chem Sci 7:866–880

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma X, Zhang W (2022) Recent developments in one-pot stepwise synthesis (OPSS) of small molecules. iScience 25:105005

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marciniec B (2009) Hydrosilylation A comprehensive review on recent advances. Springer, New York, pp 3–51

    Google Scholar 

  5. Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H (2022) Inorganometallics (transition metal–metalloid complexes) and catalysis. Chem Rev 122:3996–4090

    CAS  PubMed  Google Scholar 

  6. Zaranek M, Marciniec B, Pawluć P (2016) Ruthenium-catalysed hydrosilylation of carbon–carbon multiple bonds. Org Chem Front 3:1337–1344

    CAS  Google Scholar 

  7. Bhunia M, Sreejyothi P, Mandal SK (2020) Earth-abundant metal catalyzed hydrosilylative reduction of various functional groups. Coord Chem Rev 405:213110

    CAS  Google Scholar 

  8. Asensio JM, Bouzouita D, van Leeuwen PWNNM, Chaudret B (2020) σ-H–H, σ-C–H, and σ-Si–H bond activation catalyzed by metal nanoparticles. Chem Rev 120:1042–4084

    CAS  PubMed  Google Scholar 

  9. Du X, Huang Z (2017) Advances in base-metal-catalyzed alkene hydrosilylation. ACS Catal 7:1227–1243

    CAS  Google Scholar 

  10. Maeda K, Motokura K (2020) Recent advances on heterogeneous metal catalysts for hydrosilylation of olefins. J Jpn Petrol Insut 63:1–9

    CAS  Google Scholar 

  11. Tamao K, Ishida N, Tanaka T, Kumada M (1983) Silafunctional compounds in organic synthesis. Part 20. Hydrogen peroxide oxidation of the silicon-carbon bond in organoalkoxysilanes. Organometallics 2:1694–1696

    CAS  Google Scholar 

  12. Fleming I, Henning R, Plaut H (1984) The phenyldimethylsilyl group as a masked form of the hydroxy group. J Chem Soc:29–31

    Google Scholar 

  13. Jones GR, Landais Y (1996) The oxidation of the carbon-silicon bond. Tetrahedron 52:7599–7662

    CAS  Google Scholar 

  14. Takahashi K, Minami T, Ohara Y, Hiyama T (1993) A new synthesis of HMG-CoA reductase inhibitor NK-104 through hydrosilylation-cross coupling reaction. Tetrahedron Lett 34:8263–8266

    CAS  Google Scholar 

  15. Takahashi K, Minami T, Ohara Y, Hiyama T (1995) Synthesis of an artificial HMG-CoA reductase inhibitor NK-104 via a hydrosilylation-cross-coupling reaction. Bull Chem Soc Jpn 68:2649–2656

    CAS  Google Scholar 

  16. Denmark SE, Wang Z (2001) Highly stereoselective hydrocarbation of terminal alkynes via Pt-catalyzed hydrosilylation/Pd-catalyzed cross-coupling reactions. Org Lett 3:1073–1076

    CAS  PubMed  Google Scholar 

  17. Miller ZD, Montgomery J (2014) Regioselective allene hydroarylation via one-pot allene hydrosilylation/Pd-catalyzed cross-coupling. Org Lett 16:5486–5489

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernández-Alvarez FJ, Aitani AM, Oro LA (2014) Homogeneous catalytic reduction of CO2 with hydrosilanes. Cat Sci Technol 4:611–624

    Google Scholar 

  19. Fernández-Alvarez FJ, Oro LA (2018) Homogeneous catalytic reduction of CO2 with silicon-hydrides, state of the art. ChemCatChem 10:4783–4796

    Google Scholar 

  20. Maeda C, Miyazaki Y, Ema T (2014) Recent progress in catalytic conversions of carbon dioxide. Cat Sci Technol 4:1482–1497

    CAS  Google Scholar 

  21. Zhang Y, Zhang T, Das S (2020) Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as a reducing agent. Green Chem 22:1800–1820

    CAS  Google Scholar 

  22. Chen J, McGraw M, Chen EY-X (2019) Diverse catalytic systems and mechanistic pathways for hydrosilylative reduction of CO2. ChemSusChem 12:4543–4569

    CAS  PubMed  Google Scholar 

  23. Fontaine F-G, Stephan DW (2017) Metal-free reduction of CO2. Curr Opin Green Sustain Chem 3:28–32

    Google Scholar 

  24. Chauvier C, Cantat T (2017) A viewpoint on chemical reductions of carbon–oxygen bonds in renewable feedstocks including CO2 and biomass. ACS Catal 7:2107–2115

    CAS  Google Scholar 

  25. Pramudita RA, Motokura K (2018) Transformative reduction of carbon dioxide through organocatalysis with silanes. Green Chem 20:4834–4843

    CAS  Google Scholar 

  26. Pramudita RA, Motokura K (2021) Heterogeneous organocatalysts for the reduction of carbon dioxide with silanes. ChemSusChem 14:281–292

    CAS  PubMed  Google Scholar 

  27. Motokura K, Pramudita RA, Manaka Y (2019) Carbon dioxide to organic compounds assisted by silanes: successive transformation of silyl formate to various products. J Jpn Petrol Inst 62:255–263

    CAS  Google Scholar 

  28. Motokura K, Kashiwame D, Miyaji A, Baba T (2012) Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O. Org Lett 14:2642–2645

    CAS  PubMed  Google Scholar 

  29. Itagaki S, Yamaguchi K, Mizuno N (2013) Catalytic synthesis of silyl formates with 1 atm of CO2 and their utilization for synthesis of formyl compounds and formic acid. J Mol Catal A Chem 366:347–352

    CAS  Google Scholar 

  30. González-Sebastián L, Flores-Alamo M, Garcı́a JJ (2013) Nickel-catalyzed hydrosilylation of CO2 in the presence of Et3B for the synthesis of formic acid and related formates. Organometallics 32:7186–7194

    Google Scholar 

  31. Yang F, Saiki Y, Nakaoka K, Ema T (2023) One-pot synthesis of aldehydes or alcohols from CO2 via formamides or silyl formates. Adv Synth Catal 365:877–883

    CAS  Google Scholar 

  32. Li B, Yu J, Li C, Li Y, Luo J, Shao Y (2017) “One pot” synthesis of tertiary amines: Ru(II) catalyzed direct reductive N-benzylation of imines with benzyl bromide derivatives. Tetrahedron Lett 58:137–141

    Google Scholar 

  33. Sakai N, Kobayashi T, Ogiwara Y (2015) One-pot synthesis of tetralin derivatives from 3-benzoylpropionic acids: indium-catalyzed hydrosilylation of ketones and carboxylic acids and intramolecular cyclization. Chem Lett 44:1503–1505

    CAS  Google Scholar 

  34. Kuznetsov A, Gevorgyan V (2012) General and practical one-pot synthesis of dihydrobenzosiloles from styrenes. Org Lett 14:914–917

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto K, Sajna KV, Satoh Y, Sato K, Shimada S (2017) By-product-free siloxane-bond formation and programmed one-pot oligosiloxane synthesis. Angew Chem Int Ed 56:3168–3171

    CAS  Google Scholar 

  36. Matsumoto K, Oba Y, Nakajima Y, Shimada S, Sato K (2018) One-pot sequence-controlled synthesis of oligosiloxanes. Angew Chem Int Ed 57:4637–4641

    CAS  Google Scholar 

  37. Matsumoto K, Shimada S, Sato K (2019) Sequence-controlled catalytic one-pot synthesis of siloxane oligomers. Chem A Eur J 25:920–928

    CAS  Google Scholar 

  38. Matsumoto K (2021) Precise synthesis of discrete sequence-defined oligosiloxanes. J Jpn Petrol Inst 64:307–316

    CAS  Google Scholar 

  39. Kaneda K, Ebitani K, Mizugaki T, Mori K (2006) Design of high-performance heterogeneous metal catalysts for green and sustainable chemistry. Bull Chem Soc Jpn 79:981–1016

    CAS  Google Scholar 

  40. Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133

    CAS  PubMed  Google Scholar 

  41. Climent MJ, Corma A, Iborra S, Sabater MJ (2014) ACS Catal 4:870–891

    CAS  Google Scholar 

  42. Nishimura S, Takagaki A, Ebitani K (2013) Characterization synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem 15:2026–2042

    CAS  Google Scholar 

  43. Motokura K, Ding S, Usui K, Kong Y (2021) Enhanced catalysis based on the surface environment of the silica-supported metal complex. ACS Catal 11:11985–12018

    CAS  Google Scholar 

  44. Marciniec B, Szubert K, Potrzebowski MJ, Kownacki I, L̷ęszczak K (2008) Synthesis, characterization, and catalytic activity of a well-defined rhodium siloxide complex immobilized on silica. Angew Chem Int Ed 47:541–544

    CAS  Google Scholar 

  45. Marciniec B, Szubert K, Potrzebowski MJ, Kownacki I, Maciejewski H (2009) Catalysis of hydrosilylation by well-defined surface rhodium siloxide phosphine complexes. ChemCatChem 1:304–310

    CAS  Google Scholar 

  46. Szubert K, Marciniec B, Dutkiewicz M, Potrzebowski MJ, Maciejewski H (2014) Functionalization of spherosilicates via hydrosilylation catalyzed by well-defined rhodium siloxide complexes immobilized on silica. J Mol Catal A Chem 391:150–157

    CAS  Google Scholar 

  47. Motokura K, Maeda K (2017) Chun W-J (2017) SiO2-supported Rh catalyst for efficient hydrosilylation of olefins improved by simultaneously immobilized tertiary amines. ACS Catal 7:4637–4641

    CAS  Google Scholar 

  48. Maeda K, Uemura Y, Kim M, Nakajima K, Tanaka S, Chun W-J, Motokura K (2019) Influence of a Co-immobilized tertiary amine on the structure and reactivity of a Rh complex: accelerating effect on heterogeneous hydrosilylation. J Phys Chem C 123:14556–14563

    CAS  Google Scholar 

  49. Usui K, Miyashita K, Maeda K, Manaka Y, Chun W-J, Inazu K, Motokura K (2019) Multifunctional catalytic surface design for concerted acceleration of one-pot hydrosilylation–CO2 cycloaddition. Org Lett 21:9372–9376

    CAS  PubMed  Google Scholar 

  50. Usui K, Manaka Y, Chun W-J, Motokura K (2022) Rhodium–iodide complex on a catalytically active SiO2 surface for one-pot hydrosilylation–CO2 cycloaddition. Chem A Eur J 28:e202104001

    CAS  Google Scholar 

  51. Roy SR, Sau SC, Mandal SK (2014) Chemoselective reduction of the carbonyl functionality through hydrosilylation: integrating click catalysis with hydrosilylation in one pot. J Org Chem 79:9150–9160

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Motokura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motokura, K. (2023). Hydrosilylation Catalysis for One-Pot Synthesis. In: Marciniec, B., Maciejewski, H. (eds) Perspectives of Hydrosilylation Reactions. Topics in Organometallic Chemistry, vol 72. Springer, Cham. https://doi.org/10.1007/3418_2023_104

Download citation

Publish with us

Policies and ethics