Skip to main content

State of the Art in Rhodium- and Iridium-Catalyzed Hydrosilylation Reactions

  • Chapter
  • First Online:
Perspectives of Hydrosilylation Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 72))

Abstract

This chapter reviews the state of the art of rhodium- and iridium-catalyzed hydrosilylation reactions, demonstrating the utility of rhodium and iridium catalysts for organic synthesis. Nowadays, this field has solid and proven mechanistic foundations that allow the design, development, and optimization of new catalytic systems. As this chemistry will undoubtedly continue to make relevant progress, it deserves constant attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy AK (2008) A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv Organomet Chem 55:1–59

    CAS  Google Scholar 

  2. Marciniec B (2005) Catalysis by transition metal complexes of alkene silylation-recent progress and mechanistic implications. Coord Chem Rev 249:2374–2390

    CAS  Google Scholar 

  3. Oestreich M (2016) Transfer hydrosilylation. Angew Chem Int Ed 55:494–499

    CAS  Google Scholar 

  4. Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255:1440–1459

    CAS  Google Scholar 

  5. Marciniec B (ed) (2009) Hydrosilylation: a comprehensive review on recent advances. Springer, Dordrecht

    Google Scholar 

  6. Busetto L, Cassani MC, Femoni C, Mancinelli M, Mazzanti A, Mazzoni R, Solinas G (2011) N-heterocyclic carbene-amide rhodium(I) complexes: structures, dynamics, and catalysis. Organometallics 30:5258–5272

    CAS  Google Scholar 

  7. Morales-Cerón JP, Lara P, López-Serrano J, Santos LL, Salazar V, Álvarez E, SuÁrez A (2017) Rhodium(I) complexes with ligands based on N-heterocyclic carbene and hemilabile pyridine donors as highly E stereoselective alkyne hydrosilylation catalysts. Organometallics 36:2460–2469

    Google Scholar 

  8. van Vuuren E, Malan FP, Cordier W, Nell M, Landman M (2022) Self-isomerized-cyclometalated rhodium NHC complexes as active catalysts in the hydrosilylation of internal alkynes. Organometallics 41:187–200

    Google Scholar 

  9. de la Fuente-Olvera AA, Ruiz-Mendoza FJ, Vásquez-Pérez JM, Meléndez-Rodriguez D, Álvarez-Hernández A, Salazar-Pereda V, Mendoza-Espinosa D (2022) Rhodium(I) complexes bearing hydroxyl-functionalized 1,2,3-triazolylidenes and their catalytic application. Eur J Inorg Chem:e202200401

    Google Scholar 

  10. Karataş MO, Alıcı B, Passarelli V, Özdemir I, Pérez-Torrente JJ, Castarlenas R (2021) Iridium(I) complexes bearing hemilabile coumarin-functionalised N-heterocyclic carbene ligands with application as alkyne hydrosilylation catalysts. Dalton Trans 50:11206–11215

    PubMed  Google Scholar 

  11. Iglesias M, Pérez-Nicolás M, Sanz Miguel PJ, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2012) A synthon for a 14-electron Ir(III) species: catalyst for highly selective β-(Z) hydrosilylation of terminal alkynes. Chem Commun 48:9480–9482

    CAS  Google Scholar 

  12. Iglesias M, Sanz Miguel PJ, Polo V, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2013) An alternative mechanistic paradigm for the β-Z hydrosilylation of terminal alkynes: the role of acetone as a silane shuttle. Chem Eur J.19:17559–17566

    Google Scholar 

  13. Iglesias M, Aliaga-Lavrijsen M, Sanz Miguel PJ, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2015) Preferential α-hydrosilylation of terminal alkynes by bis-N-heterocyclic carbene rhodium(III) catalysts. Adv Synth Catal 357:350–354

    CAS  Google Scholar 

  14. Puerta-Oteo R, Munarriz J, Polo V, Jiménez MV, Pérez-Torrente JJ (2020) Carboxylate-assisted β-(Z) stereoselective hydrosilylation of terminal alkynes catalyzed by a Zwitterionic bis-NHC rhodium(III) complex. ACS Catal 10:7367–7380

    CAS  Google Scholar 

  15. Diachenko V, Page MJ, Gatus MRD, Bhadbhade M, Messerle BA (2015) Bimetallic N-heterocyclic carbene Rh(I) complexes: probing the cooperative effect for the catalyzed hydroelementation of alkynes. Organometallics 34:4543–4552

    CAS  Google Scholar 

  16. Lam RH, Keaveney ST, Messerle BA, Pernik I (2023) Bimetallic rhodium complexes: precatalyst activation-triggered bimetallic enhancement for the hydrosilylation transformation. ACS Catal 13:1999–2010

    CAS  Google Scholar 

  17. Huckaba AJ, Hollis TK, Howell TO, Valle HU, Wu Y (2013) Synthesis and characterization of a 1,3-phenylene-bridged N-alkyl bis(benzimidazole) CCC-NHC pincer ligand precursor: homobimetallic silver and rhodium complexes and the catalytic hydrosilylation of phenylacetylene. Organometallics 32:63–69

    CAS  Google Scholar 

  18. Wang Q, Tinnermann H, Tan S, Young RD (2019) Late-stage generation of bidentate η3 -benzophosphorine−phosphino ligands from a rhodium PCcarbeneP pincer complex and their use in the catalytic hydrosilylation of alkynes. Organometallics 38:3512–3520

    CAS  Google Scholar 

  19. Tan C, Tinnermann H, Wee V, Tan S, Sung S, Wang Q, Young RD (2023) Synthesis of bimetallic rhodium phosphinine complexes with enhanced catalytic activity towards alkyne hydrosilylation. J Organomet Chem 986:122617

    CAS  Google Scholar 

  20. Bajo S, Theulier CA, Campos J (2022) Mechanistic investigations on hydrogenation, isomerization and hydrosilylation reactions mediated by a Germyl-rhodium system. ChemCatChem 14:e202200157

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pérez-Torrente JJ, Nguyen DH, Jiménez MV, Modrego FJ, Puerta-Oteo R, Gómez-Bautista D, Iglesias M, Oro LA (2016) Hydrosilylation of terminal alkynes catalyzed by a ONO-pincer iridium(III) hydride compound: mechanistic insights into the hydrosilylation and dehydrogenative silylation catalysis. Organometallics 35:2410–2422

    Google Scholar 

  22. Navarro M, Smith CA, Albrecht M (2017) Enhanced catalytic activity of iridium(III) complexes by facile modification of C,N-bidentate chelating pyridylideneamide ligands. Inorg Chem 56:11688–11701

    CAS  PubMed  Google Scholar 

  23. Ruiz-Botella S, Peris E (2018) Immobilization of pyrene-adorned N-heterocyclic carbene complexes of rhodium(I) on reduced graphene oxide and study of their catalytic activity. ChemCatChem 10:1874–1881

    CAS  Google Scholar 

  24. SÁnchez-Page B, Munarriz J, Jiménez MV, Pérez-Torrente JJ, Blasco J, Subias G, Passarelli V, Álvarez P (2020) β-(Z) selectivity control by cyclometalated rhodium(III)−triazolylidene homogeneous and heterogeneous terminal alkyne hydrosilylation catalysts. ACS Catal 10:13334–13351

    Google Scholar 

  25. SÁnchez-Page B, Jiménez MV, Pérez-Torrente JJ, Passarelli V, Blasco J, Subias G, Granda M, Álvarez P (2020) Hybrid catalysts comprised of graphene modified with rhodium based N-heterocyclic carbenes for alkyne hydrosilylation. ACS Appl Nano Mater 3:1640–1655

    Google Scholar 

  26. Panyam PKR, Atwi B, Ziegler F, Frey W, Nowakowski M, Bauer M, Buchmeiser MR (2021) Rh(I)/(III)-N-heterocyclic carbene complexes: effect of steric confinement upon immobilization on regio- and stereoselectivity in the hydrosilylation of alkynes. Chem A Eur J 27:17220–17229

    CAS  Google Scholar 

  27. Wong CM, Walker DB, Soeriyadi AH, Gooding JJ, Messerle BA (2016) A versatile method for the preparation of carbon– rhodium hybrid catalysts on graphene and carbon black. Chem Sci 7:1996–2004

    CAS  PubMed  Google Scholar 

  28. Roemer M, Keaveney ST, Gonçales VR, Lian J, Downes JE, Gautam S, Gooding JJ, Messerle BA (2022) Engineering regioselectivity in the hydrosilylation of alkynes using heterobimetallic dual-functional hybrid catalysts. Cat Sci Technol 12:226–236

    CAS  Google Scholar 

  29. Zheng N, Song W, Zhang T, Li M, Zheng Y, Chen L (2018) Rhodium-catalyzed highly regioselective and stereoselective intermolecular hydrosilylation of internal Ynamides under mild conditions. J Org Chem 83:6210–6216

    CAS  PubMed  Google Scholar 

  30. Gao W, Ding H, Yu T, Wang Z, Ding S (2021) Iridium-catalyzed regioselective hydrosilylation of internal alkynes facilitated by directing and steric effects. Org Biomol Chem 19:6216–6220

    CAS  PubMed  Google Scholar 

  31. Xie X, Zhang X, Gao W, Meng C, Wang X, Ding S (2019) Iridium-catalyzed Markovnikov hydrosilylation of terminal alkynes achieved by using a trimethylsilyl-protected trihydroxysilane. Commun Chem 2:101

    Google Scholar 

  32. Song L-J, Ding S, Wang Y, Zhang X, Wu Y-D, Sun J (2016) Ir-catalyzed regio- and stereoselective hydrosilylation of internal thioalkynes: a combined experimental and computational study. J Org Chem 81:6157–6164

    CAS  PubMed  Google Scholar 

  33. Zeng Y, Fang X-J, Tang R-H, Xie J-Y, Zhang F-J, Xu Z, Nie Y-X, Xu L-W (2022) Rhodium-catalyzed dynamic kinetic asymmetric hydrosilylation to access silicon-stereogenic center. Angew Chem Int Ed 61:e202214147

    CAS  Google Scholar 

  34. Tang R-H, Xu Z, Nie Y-N, Xiao X-Q, Yang K-F, Xie J-L, Guo B, Yin G-W, Yang X-M, Xu L-W (2020) Catalytic asymmetric trans-selective hydrosilylation of bisalkynes to access AIE and CPL-active silicon-stereogenic benzosiloles. iScience 23:101268

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang X, Ma P-L, Chen H-C, Li C-Y, Wang P (2020) Asymmetric synthesis and application of chiral spirosilabiindanes. Angew Chem Int Ed 59:8937–8940

    CAS  Google Scholar 

  36. Huang Y-H, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P (2022) Enantioselective synthesis of silicon-stereogenic monohydrosilanes by rhodium-catalyzed intramolecular hydrosilylation. Angew Chem Int Ed 61:e202113052

    CAS  Google Scholar 

  37. Naganawa Y, Namba T, Kawagishi M, Nishiyama H (2015) Construction of a chiral silicon center by rhodium-catalyzed enantioselective intramolecular Hydrosilylation. Chem A Eur J 21:9319–9322

    CAS  Google Scholar 

  38. Hua Y, Nguyen HH, Scaggs WR, Jeon J (2013) Ligand-controlled, norbornene-mediated, regio- and diastereoselective rhodium-catalyzed intramolecular alkene hydrosilylation reactions. Org Lett 15:3412–3415

    CAS  PubMed  Google Scholar 

  39. Hua Y, Nguyen HH, Trog G, Berlin AS, Jeon J (2014) Rhodium-catalyzed alkene hydrosilylation via a hydride shuttle process by diene ligands: dramatic enhancement of regio- and diastereoselectivity. Eur J Org Chem:5890–5895

    Google Scholar 

  40. He T, Liu L-C, Ma W-P, Li B, Zhang Q-W, He W (2020) Enantioselective construction of Si-stereogenic center via rhodium-catalyzed intermolecular hydrosilylation of alkene. Chem A Eur J 26:17011–17015

    CAS  Google Scholar 

  41. Zhang W-W, Li B-J (2023) Enantioselective hydrosilylation of β,β-disubstituted enamides to construct α-aminosilanes with vicinal stereocenters. Angew Chem Int Ed 62:e202214534

    CAS  Google Scholar 

  42. Zhang W-R, Zhang W-W, Li H, Li B-J (2023) Amide-directed, rhodium-catalyzed enantioselective hydrosilylation of unactivated internal alkenes. Org Lett 25:1667–1672

    CAS  PubMed  Google Scholar 

  43. Zhao Z-Y, Nie Y-X, Tang R-H, Yin G-W, Cao J, Xu Z, Cui Y-M, Zheng Z-J, Xu L-W (2019) Enantioselective rhodium-catalyzed desymmetric hydrosilylation of cyclopropenes. ACS Catal 9:9110–9116

    CAS  Google Scholar 

  44. Zhou H-Q, Ling F-Y, Fang X-J, Zhu H-J, Li L, Ye F, Xua Z, Xu L-W (2023) An unusual trans-hydrosilylation of prochiral 1,1-disubstituted cyclopropenes revealing the different nature of asymmetric palladium and rhodium catalysis. Org Chem Front 10:430–439

    CAS  Google Scholar 

  45. Zhang X, Gao C, Xie X, Liu Y, Ding S (2020) Thioether-facilitated iridium-catalyzed hydrosilylation of steric 1,1-disubstituted olefins. Eur J Org Chem:556–560

    Google Scholar 

  46. Srinivas V, Nakajima Y, Sato K, Shimada S (2018) Iridium-catalyzed hydrosilylation of sulfur-containing olefins. Org Lett 20:12–15

    CAS  PubMed  Google Scholar 

  47. Xie X, Zhang X, Yang H, Ji X, Li J, Ding S (2019) Iridium-catalyzed hydrosilylation of unactivated alkenes: scope and application to late-stage functionalization. J Org Chem 84:1085–1093

    CAS  PubMed  Google Scholar 

  48. Muchnij JA, Kwaramba FB, Rahaim RJ (2014) Sterically directed iridium-catalyzed hydrosilylation of alkenes in the presence of alkynes. Org Lett 16:1330–1333

    CAS  PubMed  Google Scholar 

  49. Li J, Yang C, Bai Y, Yang X, Liu Y, Peng J (2018) The effect of an acylphosphine ligand on the rhodium-catalyzed hydrosilylation of alkenes. J Organomet Chem 855:7–11

    CAS  Google Scholar 

  50. Xue M, Li J, Peng J, Bai Y, Zhang G, Xiao W, Lai G (2014) Effect of triarylphosphane ligands on the rhodium-catalyzed hydrosilylation of alkene. Appl Organomet Chem 28:120–126

    CAS  Google Scholar 

  51. Liu W, Lu W, Yang L, Wu X, Zhang (2022) Rhodium-catalyzed anti-Markovnikov hydrosilylation of alkenes. Tetrahedron 109:132632

    CAS  Google Scholar 

  52. Naito T, Yoneda T, Ito J-i, Nishiyama H (2012) Enantioselective hydrosilylation of aromatic alkenes catalyzed by chiral bis(oxazolinyl)phenyl–rhodium acetate complexes. Synlett 23:2957–2960

    CAS  Google Scholar 

  53. Azpeitia S, Garralda MA, Huertos MA (2017) Rhodium(III) catalyzed solvent-free tandem isomerization–hydrosilylation from internal alkenes to linear silanes. ChemCatChem 9:1901–1905

    CAS  Google Scholar 

  54. Dobrynin MV, Pretorius C, Kama DV, Roodt A, Boyarskiy VP, Islamova RM (2019) Rhodium(I)-catalysed cross-linking of polysiloxanes conducted at room temperature. J Catal 372:193–200

    CAS  Google Scholar 

  55. Huckaba AJ, Hollis TK, Reilly SW (2013) Homobimetallic rhodium NHC complexes as versatile catalysts for hydrosilylation of a multitude of substrates in the presence of ambient air. Organometallics 32:6248–6256

    CAS  Google Scholar 

  56. Truscott BJ, Slawin AMZ, Nolan SP (2013) Well-defined NHC-rhodium hydroxide complexes as alkene hydrosilylation and dehydrogenative silylation catalysts. Dalton Trans 42:270–276

    CAS  PubMed  Google Scholar 

  57. Srivastava R, Jakoobi M, Thieuleux C, Quadrelli EA, Camp C (2021) A family of rhodium(I) NHC chelates featuring O-containing tethers for catalytic tandem alkene isomerization–hydrosilylation. Dalton Trans 50:869–879

    CAS  PubMed  Google Scholar 

  58. Li J, Peng J, Zhang G, Bai Y, Lai G, Li X (2010) Hydrosilylation catalysed by a rhodium complex in a supercritical CO2/ionic liquid system. New J Chem 34:1330–1334

    CAS  Google Scholar 

  59. Li J, Peng J, Bai Y, Lai G, Li X (2011) Synthesis of rhodium N-heterocyclic carbene complexes and their catalytic activity in the hydrosilylation of alkenes in ionic liquid medium. J Organomet Chem 696:2116–2121

    CAS  Google Scholar 

  60. Li J, Peng J, Wang D, Bai Y, Jiang J, Lai G (2011) Hydrosilylation reactions catalyzed by rhodium complexes with phosphine ligands functionalized with imidazolium salts. J Organomet Chem 696:263–268

    CAS  Google Scholar 

  61. Li J, Peng J, Bai Y, Zhang G, Lai G, Li X (2010) Phosphines with 2-imidazolium ligands enhance the catalytic activity and selectivity of rhodium complexes for hydrosilylation reactions. J Organomet Chem 695:431–436

    CAS  Google Scholar 

  62. Bai Y, Zhang F, Li J, Xu Y, Peng J, Xiao W (2015) Application of polyethyleneglycol (PEG) functionalized ionic liquids for the rhodium-catalyzed hydrosilylation reaction of alkenes. J Organomet Chem 794:65–69

    CAS  Google Scholar 

  63. Xu Y, Bai Y, Peng J, Li J, Xiao W, Lai G (2014) Hydrosilylation of alkenes catalyzed by rhodium with polyethylene glycol-based ionic liquids as ligands. J Organomet Chem 765:59–63

    CAS  Google Scholar 

  64. Ma C, Li J, Peng J, Bai Y, Zhang G, Xiao W, Lai G (2013) Effect of carboxyl-functionalized imidazolium salts on the rhodium-catalyzed hydrosilylation of alkene. J Organomet Chem 727:28–36

    CAS  Google Scholar 

  65. Riener K, Meister TK, Gigler P, Herrmann WA, Kühn FE (2015) Mechanistic insights into the iridium-catalyzed hydrosilylation of allyl compounds. J Catal 331:203–209

    CAS  Google Scholar 

  66. Igarashi M, Matsumoto T, Kobayashi T, Sato K, Ando W, Shimada S, Hara M, Uchida H (2014) Ir-catalyzed hydrosilylation reaction of allyl acetate with octakis(dimethylsiloxy)octasilsesquioxane and related hydrosilanes. J Organomet Chem 752:141–146

    CAS  Google Scholar 

  67. Chalk AJ, Harrod JF (1965) Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by group VIII metal complexes. J Am Chem Soc 87:16–21

    CAS  Google Scholar 

  68. Harrod JF, Chalk AJ (1977) Wender I, Pino P (eds) Organic synthesis via metal carbonyls, vol 2. Wiley, New York, p 673

    Google Scholar 

  69. Tanke RS, Crabtree RH (1990) Unusual activity and selectivity in alkyne hydrosilylation with an iridium catalyst stabilized by an O-donor ligand. J Am Chem Soc 112:7984–7989

    CAS  Google Scholar 

  70. Ojima I, Clos N, Donovan RJ, Ingallina P (1990) Hydrosilylation of 1-hexyne catalyzed by rhodium and cobalt-rhodium mixed-metal complexes. Mechanism of apparent trans addition. Organometallics 9:3127–3133

    CAS  Google Scholar 

  71. Riant O, Mostefaï N, Courmarcel J (2004) Recent advances in the asymmetric hydrosilylation of ketones, imines and electrophilic double bonds. Synthesis:2943–2958

    Google Scholar 

  72. Arena GC (2009) Recent progress in the asymmetric hydrosilylation of ketones and imines. Mini-Rev Org Chem 6:159–167

    CAS  Google Scholar 

  73. Uvarov VM, de Vekki DA (2020) Recent progress in the development of catalytic systems for homogeneous asymmetric hydrosilylation of ketones. J Organomet Chem 923:121415

    CAS  Google Scholar 

  74. Riener K, Högerl MP, Gigler P, Kühn FE (2012) Rhodium-catalyzed hydrosilylation of ketones: catalyst development and mechanistic insights. ACS Catal 2:613–621

    CAS  Google Scholar 

  75. Malacea R, Poli R, Manoury E (2010) Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coord Chem Rev 254:729–752

    CAS  Google Scholar 

  76. Díez-González S, Marion N, Nolan SP (2009) N-heterocyclic carbenes in late transition metal catalysis. Chem Rev 109:3612–3676

    PubMed  Google Scholar 

  77. Lázaro G, Iglesias M, Fernández-Alvarez FJ, Sanz Miguel P, Pérez-Torrente JJ, Oro LA (2013) Synthesis of poly(silyl ethers)s by rhodium(I)-NHC catalyzed hydrosilylation: homogeneous versus heterogeneous catalysis. ChemCatChem 5:1133–1141

    Google Scholar 

  78. Lázaro G, Fernández-Alvarez FJ, Iglesias M, Horna C, Vispe E, Sancho R, Lahoz FJ, Iglesias M, Pérez-Torrente JJ, Oro LA (2014) Heterogeneous catalysts based on supported Rh-NHC complexes: synthesis of high molecular weight poly(silyl ethers)s by catalytic hydrosilylation. Cat Sci Technol 4:62–70

    Google Scholar 

  79. Lázaro G, Fernández-Alvarez FJ, Munarriz J, Polo V, Iglesias M, Pérez-Torrente JJ, Oro LA (2015) Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes. Its role in the catalytic hydrosilylation of ketones. Cat Sci Technol 5:1878–1887

    Google Scholar 

  80. Lappert MF, Maskell RK (1984) Homogenous catalysis: VIII. Carbene-transition-metal complexes as hydrosilylation catalysts. J Organomet Chem 264:217–228

    CAS  Google Scholar 

  81. Herrmann WA, Goossen LJ, Köcher C, Artus GRJ (1996) Chiral heterocyclic carbenes in asymmetric homogeneous catalysis. Angew Chem Int Ed Engl 35:2805–2807

    CAS  Google Scholar 

  82. Herrmann WA, Baskakov D, Herdtweck E, Hoffmann SD, Bunlaksananusorn T, Rampf F, Rodefeld L (2006) Chiral N-heterocyclic carbene ligands derived from 2,2´-bipiperidine and partially reduced biisoquinoline: rhodium and iridium complexes in asymmetric catalysis. Organometallics 25:2449–2456

    CAS  Google Scholar 

  83. Enders D, Gielen H, Breuer K (1997) Catalytic asymmetric hydrosilylation with (triazolinylidene)rhodium complexes containing an axis of chirality. Tetrahedron Asymm 8:3571–3574

    CAS  Google Scholar 

  84. Faller JW, Fontaine PP (2006) Stereodynamics and asymmetric hydrosilylation with chiral rhodium complexes containing a monodentate N-heterocyclic carbene. Organometallics 25:5887–5893

    CAS  Google Scholar 

  85. Ros A, Alcarazo M, Iglesias-Sigüenza J, Díez E, Álvarez E, Fernández R, Lassaletta JM (2008) Stereoselective synthesis of rhodium(I) 4-(Dialkylamino)triazol-5-ylidene complexes. Organometallics 27:4555–4564

    CAS  Google Scholar 

  86. Henderson AS, Bower JF, Galan MC (2014) Carbohydrate-based N-heterocyclic carbenes for enantioselective catalysis. Org Biomol Chem 12:9180–9183

    CAS  PubMed  Google Scholar 

  87. Duan W-L, Shi M, Rong G-B (2003) Synthesis of novel axially chiral Rh-NHC complexes derived from BINAM and application in the enantioselective hydrosilylation of methyl ketones. Chem Commun:2916–2917

    Google Scholar 

  88. Gade LH, César V, Bellemin-Laponnaz S (2004) A modular assembly of chiral oxazolinylcarbene-rhodium complexes: efficient phosphane-free catalyst for the asymmetric hydrosilylation of dialkyl ketones. Angew Chem Int Ed 43:1014–1017

    CAS  Google Scholar 

  89. Schneider N, Finger M, Haferkemper C, Bellemin-Laponnaz S, Hofmann P, Gade LH (2009) Metal silylenes generated by double silicon-hydrogen activation: key intermediates in the rhodium-catalyzed hydrosilylation of ketones. Angew Chem Int Ed 48:1609–1613

    CAS  Google Scholar 

  90. Gu P, Xu Q, Shi M (2014) Synthesis and structural studies on the chiral phosphine-NHC rhodium and palladium complexes for their performances in the metal-catalyzed reactions. Tetrahedron 70:7886–7892

    CAS  Google Scholar 

  91. Swamy ASP, Varenikov A, de Ruiter G (2020) Chiral imidazo[1,5-a]pyridine-oxazolines: a versatile family of NHC ligands for the highly enantioselective hydrosilyation of ketones. Organometallics 39:247–257

    Google Scholar 

  92. Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K (1989) Chiral and C2-symmetrical Bis(oxazolinylpyridine)rhodium(III) complexes: effective catalysts for asymmetric hydrosilylation of ketones. Organometallics 8:846–848

    CAS  Google Scholar 

  93. Ghoshal A, Sarkar AR, Manickam G, Kumaran RS, Jayashankaran J (2010) Rhodium-catalyzed asymmetric hydrosilylation of ketones employing a new ligand embodying the bis(oxazolinyl)pyridine moiety. Synlett:1459–1462

    Google Scholar 

  94. Li WJ, Xu ZL, Qiu SX (2010) Concise methods for the synthesis of chiral polyoxazolines and their application in asymmetric hydrosilylation. Beilstein J Org Chem 6:29. https://doi.org/10.3762/bjoc.6.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reyes C, Prock A, Giering WP (2003) Analysis of the enantioselectivities and initial rates of the hydrosilylation of acetophenone catalyzed by [Rh(cod)Cl]2/(chiral diphosphine). The quantitative analysis of ligand effects. J Organomet Chem 671:13–26

    CAS  Google Scholar 

  96. Chianese AR, Crabtree RH (2005) Axially chiral bidentate N-heterocyclic carbene ligands derived from BINAM: rhodium and iridium complexes in asymmetric ketone hydrosilylation. Organometallics 24:4432–4436

    CAS  Google Scholar 

  97. Comte V, Balan C, Le Gendre P, Moïse C (2007) From inconsistent results to high speed hydrosilylation. Chem Commun:713–715

    Google Scholar 

  98. Garcés K, Lalrempuia R, Polo V, Fernández-Alvarez FJ, García-Orduña P, Lahoz FJ, Pérez-Torrente JJ, Oro LA (2016) Rhodium-catalyzed dehydrogenative silylation of acetophenone derivatives: formation of silyl enol ethers versus silyl ethers. Chem A Eur J 22:14717–14729

    Google Scholar 

  99. Nishibayashi Y, Segawa K, Takada H, Ohe K, Uemura S (1996) Iridium(I)-catalyzed asymmetric hydrosilylation of ketones using a chiral oxazolylferrocene-phosphine hybrid ligand. Chem Commun:847–848

    Google Scholar 

  100. Kawabata S, Tokura H, Chiyojima H, Okamoto M, Sakaguchi S (2012) Asymmetric hydrosilane reduction of ketones catalyzed by an iridium complex bearing a hydroxyamide-functionalized NHC ligand. Adv Synth Catal 354:807–812

    CAS  Google Scholar 

  101. Shinohara K, Kawabata S, Nakamura H, Manabe Y, Sakaguchi S (2014) Enantioselective hydrosilylation of ketones catalyzed by a readily accessible N-heterocyclic carbene-Ir complex at room temperature. Eur J Org Chem:5532–5539

    Google Scholar 

  102. Manabe Y, Shinohara K, Nakamura H, Teramoto H, Sakaguchi S (2016) Chiral N-heterocyclic carbene iridium catalyst for the enantioselective hydrosilane reduction of ketones. J Mol Catal A Chem 421:138–145

    CAS  Google Scholar 

  103. Teramoto H, Sakaguchi S (2018) Enantioselective catalytic hydrosilylation of propiophenone with a simple combination of a cationic iridium complex and a chiral azolium salt. J Organomet Chem 875:52–58

    CAS  Google Scholar 

  104. Matsuki T, Teramoto H, Ichihara R, Inui K, Sakaguchi S (2022) Asymmetric silane reduction of ketones and β-keto esters catalyzed by a chiral azolium/iridium system in the presence of a base in methanol at room temperature. Results Chem 4:100364

    CAS  Google Scholar 

  105. Fernández-Alvarez FJ, Oro LA (2018) Homogeneous catalytic reduction of CO2 with silicon-hydrides, state of the art. ChemCatChem 10:4783–4796

    Google Scholar 

  106. Zhang Y, Zhang T, Das S (2020) Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as reducing agents. Green Chem 22:1800–1820

    CAS  Google Scholar 

  107. Fernández-Alvarez FJ, Oro LA (2021) Iridium-catalyzed homogeneous hydrogenation and hydrosilylation of carbon dioxide. Top Organomet Chem 69:303–324

    Google Scholar 

  108. Guzmán J, García-Orduña P, Lahoz FJ, Fernández-Alvarez FJ (2020) Unprecedent formation of methylsilylcarbonates from iridium-catalyzed reduction of CO2 with hydrosilanes. RSC Adv 10:9582–9586

    PubMed  PubMed Central  Google Scholar 

  109. Koinuma H, Kawakami F, Kato H, Hirai H (1981) Hydrosilylation of carbon dioxide catalysed by ruthenium complexes. J Chem Soc Chem Commun:213–214

    Google Scholar 

  110. Süss-Fink G, Reiner J (1981) Anionische Rutheniumcluster als Katalysatoren bei der Hydrosilylierung von Kohlendioxid. J Organomet Chem 221:C36–C38

    Google Scholar 

  111. Eisenschmid TC, Eisenberg R (1989) The iridium complex catalyzed reduction of carbon dioxide to methoxide by alkylsilanes. Organometallics 8:1822–1824

    CAS  Google Scholar 

  112. Itagaki S, Yamaguchi K, Mizuno N (2013) Catalytic synthesis of silyl formates with 1 atm of CO2 and their utilization for synthesis of formyl compounds and formic acid. J Mol Catal A Chem 366:347–352

    CAS  Google Scholar 

  113. Nguyen TVQ, Yoo W-J, Kobayashi S (2015) Effective formylation of amines with carbon dioxide and diphenylsilane catalyzed by chelating bis(tzNHC) rhodium complexes. Angew Chem Int Ed 54:9209–9212

    CAS  Google Scholar 

  114. Lam RH, McQueen CMA, Pernik I, McBurney RT, Hill AF, Messerle BA (2019) Selective formylation or methylation of amines using carbon dioxide catalysed by a rhodium perimidine-based NHC complex. Green Chem 21:538–549

    CAS  Google Scholar 

  115. Lalrempuia R, Iglesias M, Polo V, Sanz Miguel PJ, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2012) Effective fixation of CO2 by iridium-catalyzed hydrosilylation. Angew Chem Int Ed 51:12824–12827

    CAS  Google Scholar 

  116. Julián A, Jaseer EA, Garcés K, Fernández-Alvarez FJ, García-Orduña P, Lahoz FJ, Oro LA (2016) Tuning the activity and selectivity of iridium-NSiN catalyzed CO2 hydrosilylation processes. Cat Sci Technol 6:4410–4417

    Google Scholar 

  117. Julián A, Guzmán J, Jaseer EA, Fernández-Alvarez FJ, Royo R, Polo V, García-Orduña P, Lahoz FJ, Oro LA (2017) Mechanistic insights on the reduction of CO2 to silylformates catalyzed by Ir-NSiN species. Chem A Eur J 23:11898–11907

    Google Scholar 

  118. Guzmán J, García-Orduña P, Polo V, Lahoz FJ, Oro LA, Fernández-Alvarez FJ (2019) Ir-catalyzed selective reduction of CO2 to the methoxy or formate level with HSiMe(OSiMe3)2. Cat Sci Technol 9:2858–2867

    Google Scholar 

  119. Guzmán J, Urriolabeitia A, Padilla M, García-Orduña P, Polo V, Fernández-Alvarez FJ (2022) Mechanism insights into the iridium(III)- and B(C6F5)3-catalyzed reduction of CO2 to the formaldehyde level with tertiary silanes. Inorg Chem 61:20216–20221

    PubMed  PubMed Central  Google Scholar 

  120. Park S, Bézier D, Brookhart M (2012) An efficient iridium catalyst for reduction of carbon dioxide to methane with Trialkylsilanes. J Am Chem Soc 134:11404–11407

    CAS  PubMed  Google Scholar 

  121. Ojeda-Amador AI, Munarriz J, Alamán-Valtierra P, Polo V, Puerta-Oteo R, Jiménez MV, Fernández-Alvarez FJ, Pérez-Torrente JJ (2019) Mechanistic insights on the functionalization of CO2 with amines and hydrosilanes catalyzed by a Zwitterionic iridium carboxylate-functionalized Bis-NHC catalyst. ChemCatChem 11:5524–5535

    CAS  Google Scholar 

  122. Tahara A, Nagashima H (2020) Recent topics of iridium-catalyzed hydrosilylation of tertiary amides to silylhemiaminals. Tetrahedron Lett 61:151423

    CAS  Google Scholar 

  123. Khalimon AY, Gudun KA, Hayrapetyan D (2019) Base metal catalysts for deoxygenative reduction of amides to amines. Catalysts 9:490

    Google Scholar 

  124. Li B, Sortais J-P, Darcel C (2016) Amine synthesis via transition metal homogeneous catalysed hydrosilylation. RSC Adv 6:57603–57625

    CAS  Google Scholar 

  125. Kuwano R, Takahashi M, Ito Y (1998) Reduction of amides to amines via catalytic hydrosilylation by a rhodium complex. Tetrahedron Lett 39:1017–1020

    CAS  Google Scholar 

  126. Bornschein C, Lennox AJJ, Werkmeister S, Junge K, Beller M (2015) A mild selective reduction of β-lactams: Rh-catalyzed hydrosilylation towards important pharmacological building blocks. Eur J Org Chem:1915–1919

    Google Scholar 

  127. Das S, Li Y, Bornschein C, Pisiewicz S, Kiersch K, Michalik D, Gallou F, Junge K, Beller M (2015) Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides. Angew Chem Int Ed 54:12389–12393

    CAS  Google Scholar 

  128. Das S, Li Y, Lu L-Q, Junge K, Beller M (2016) A general and selective rhodium-catalyzed reduction of amides, N-acyl amino esters, and dipeptides using phenyl silane. Chem A Eur J 22:7050–7053

    CAS  Google Scholar 

  129. Stoelzel M, Präsang C, Blom B, Driess M (2013) N-heterocyclic silylene (NHSi) rhodium and iridium complexes: synthesis, structure, reactivity, and catalytic ability. Aust J Chem 66:1163–1170

    CAS  Google Scholar 

  130. Ojima I, Nihonyanagi M, Kogure T, Kumagai M, Horiuchi S, Nakatsugawa K, Nagai Y (1975) Reduction of carbonyl compounds via hydrosilylation: I. Hydrosilylation of carbonyl compounds catalyzed by tris(triphenylphosphine)chlororhodium. J Organomet Chem 94:449–461

    CAS  Google Scholar 

  131. Motoyama Y, Aoki M, Takaoda N, Aoto R, Nagashima H (2009) Highly efficient synthesis of aldenamines from carboxamides by iridium-catalyzed silane-reduction/dehydration under mild conditions. Chem Commun:1574–1576

    Google Scholar 

  132. Tahara A, Miyamoto Y, Aoto R, Shigeta K, Une Y, Sunada Y, Motoyama Y, Nagashima H (2015) Catalyst design of Vaska-type iridium complexes for highly efficient synthesis of π-conjugated enamines. Organometallics 34:4895–4907

    CAS  Google Scholar 

  133. Une Y, Tahara A, Miyamoto Y, Sunana Y, Nagashima H (2019) Iridium-PPh3 catalysts for conversion of amides to enamines. Organometallics 38:852–862

    CAS  Google Scholar 

  134. Rogova T, Gabriel P, Zavitsanou S, Leitch JA, Duarte F, Dixon DJ (2020) Reverse polarity reductive functionalization of tertiary amides via a dual iridium-catalyzed hydrosilylation and single electron transfer strategy. ACS Catal 10:11438–11447

    CAS  Google Scholar 

  135. Cheng C, Brookhart M (2012) Iridium-catalyzed reduction of secondary amides to secondary amines and imines by diethylsilane. J Am Chem Soc 134:11304–11307

    CAS  PubMed  Google Scholar 

  136. Park S, Brookhart M (2012) Development and mechanistic investigation of a highly efficient iridium(V) silyl complex for the reduction of tertiary amides to amines. J Am Chem Soc 134:640–653

    CAS  PubMed  Google Scholar 

  137. Corre Y, Trivelli X, Capet F, Djukic J-P, Agbossou-Niedercorn F, Michon C (2017) Efficient and selective hydrosilylation of secondary and tertiary amides catalyzed by an iridium(III) metallacycle: development and mechanistic investigations. ChemCatChem 9:2009–2017

    CAS  Google Scholar 

  138. Corre Y, Rysak V, Nagyházi M, Kalocsai D, Trivelli X, Djukic J-P, Agbossou-Niedercorn F, Michon C (2020) One-pot controlled reduction of conjugated amides by sequential double hydrosilylation catalyzed by an iridium(III) metallacycle. Eur J Inorg Chem:6212–6220

    Google Scholar 

  139. Guzmán J, Bernal AM, García-Orduña P, Lahoz FJ, Oro LA, Fernández-Alvarez FJ (2019) Selective reduction of formamides to O-silylated hemiaminals or methylamines with HSiMe2Ph catalyzed by iridium complexes. Dalton Trans 48:4255–4262

    PubMed  Google Scholar 

  140. Langlois N, Dang T-P, Kagan HB (1973) Synthese Asymetrique d’Amines par Hydrosilylation d’Imines Catalysee par un Complexe chiral du rhodium. Tetrehedron Lett:4865–4868

    Google Scholar 

  141. Kagan HB, Langlois N, Dang TP (1975) Reduction Asymetrique Catalysee par des Complexes de Metaux de Traansition. IV. Synthese d’Amines Chirales au Moyen d’un Complexe de Rhodium et d’Isopropylidene Dihydroxy-2,3 Bis(diphenyl-Phosphino)-1,4 Butane (DIOP). J Organomet Chem 90:353–365

    CAS  Google Scholar 

  142. Takei I, Nishibayashi Y, Arikawa Y, Uemura S, Hidai M (1999) Iridium-catalyzed asymmetric hydrosilylation of imines using chiral oxazolinyl-phosphine ligands. Organometallics 18:2271–2274

    CAS  Google Scholar 

  143. Niyomura O, Iwasawa T, Sawada N, Tokunaga M, Obora Y, Tsuji Y (2005) A bowl-shaped phosphine as a ligand in rhodium-catalyzed hydrosilylation: rate enhancement by a mono(phosphine) rhodium species. Organometallics 24:3468–3475

    CAS  Google Scholar 

  144. Lali W, La Paglia F, Le Goff X-F, Sredojevíc D, Pfeffer M, Djukic J-P (2012) Room temperature tandem hydroamination and hydrosilyation/protodesilation catalysis by a tricarbonylchromium-bound iridacycle. Chem Commun 48:10310–10312

    Google Scholar 

  145. Corre Y, Lali W, Hamdaoui M, Trivelli X, Djukic J-P, Agbossou-Niedercorn F, Michon C (2015) Efficient hydrosilylation of imines using catalysts based on iridium(III) metallacycles. Cat Sci Technol 5:1452–1458

    CAS  Google Scholar 

  146. Pèrez-Miqueo J, San Nacianceno V, Urquiola FB, Freixa Z (2018) Revisiting the iridacycle-catalyzed hydrosilylation of enolizable imines. Cat Sci Technol 8:6316–6329

    Google Scholar 

  147. Hamdaoui M, Desrousseaux C, Habbita H, Djukic J-P (2017) Iridacycles as catalysts for the autotandem conversion of nitriles into amines by hydrosilylation: experimental investigation and scope. Organometallics 36:4864–48882

    CAS  Google Scholar 

  148. Takaya J, Ogawa K, Nakaya R, Iwasawa N (2020) Rhodium-catalyzed chemoselective hydrosilylation of nitriles to an imine oxidation level enabled by a pincer-type group 13 metallylene ligand. ACS Catal 10:12223–12228

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Iglesias , Francisco J. Fernández-Alvarez or Luis A. Oro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iglesias, M., Fernández-Alvarez, F.J., Oro, L.A. (2023). State of the Art in Rhodium- and Iridium-Catalyzed Hydrosilylation Reactions. In: Marciniec, B., Maciejewski, H. (eds) Perspectives of Hydrosilylation Reactions. Topics in Organometallic Chemistry, vol 72. Springer, Cham. https://doi.org/10.1007/3418_2023_100

Download citation

Publish with us

Policies and ethics