Skip to main content

Computational Modeling of Selected Photoactivated Processes

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

Abstract

Photoactivated processes play an increasingly important role in chemistry. Their widespread use is still relatively recent, and the application of computational methods to the treatment of the large systems usually involved in experimentally relevant systems is even more recent. The application of TD-DFT calculations for the photoactivation step and of conventional DFT calculations for selected regions of the potential energy surface has been demonstrated as a powerful tool for mechanistic understanding. This contribution presents four representative examples of this application, highlighting the successes and the struggles of this type of treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CASPT2:

Complete active space second-order perturbation theory

CASSCF:

Complete active space self-consistent field

DFT:

Density functional theory

LMCT:

Ligand-to-metal charge transfer

MECP:

Minimum energy crossing point

MLCT:

Metal-to-ligand charge transfer

MM:

Molecular mechanics

OIRE:

Oxidatively induced reductive elimination

ONIOM:

Own N-layered integrated molecular orbital and molecular mechanics

OSS:

Open-shell singlet

PET:

Photoinduced electron transfer

QM:

Quantum mechanics

SET:

Single electron transfer

SMD:

Solvation model based on density

TD-DFT:

Time-dependent density functional theory

UFF:

Universal force field

References

  1. Schultz DM, Yoon TP (2014) Science 343:985

    CAS  Google Scholar 

  2. Oelgemöller M (2016) Chem Rev 116:9664

    Google Scholar 

  3. Bach T, Hehn JP (2011) Angew Chem Int Ed 50:1000

    CAS  Google Scholar 

  4. Snyder JA, Grüninger P, Bettinger HF, Bragg AE (2017) J Phys Chem A 121:5136

    CAS  Google Scholar 

  5. Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322

    CAS  Google Scholar 

  6. Yoon TP, Ischay MA, Du J (2010) Nat Chem 2:527

    CAS  Google Scholar 

  7. Arias-Rotondo DM, McCusker JK (2016) Chem Soc Rev 45:5803

    CAS  Google Scholar 

  8. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F (2007) Top Curr Chem 281:143

    CAS  Google Scholar 

  9. Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O (2012) Chemistry 18:7336

    CAS  Google Scholar 

  10. Revol G, McCallum T, Morin M, Gagosz F, Barriault L (2013) Angew Chem Int Ed 52:13342

    CAS  Google Scholar 

  11. Gualandi A, Marchini M, Mengozzi L, Natali M, Lucarini M, Ceroni P, Cozzi PG (2015) ACS Catal 5:5927

    CAS  Google Scholar 

  12. Kainz QM, Matier CD, Batoszewicz A, Zultanksi SL, Peters JC, Fu GC (2016) Science 351:681

    CAS  Google Scholar 

  13. Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, Read de Alaniz J (2015) Chem Commun 51:1170

    Google Scholar 

  14. Hedstrand DM, Kruizinga WH, Kellogg RM (1978) Tetrahedron Lett 19:1255

    Google Scholar 

  15. Nicewicz DA, MacMillan DWC (2008) Science 322:77

    CAS  Google Scholar 

  16. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) J Am Chem Soc 130:12886

    CAS  Google Scholar 

  17. Skubi KL, Blum TR, Yoon TP (2016) Chem Rev 116:1003

    Google Scholar 

  18. Hopkinson MN, Sahoo B, Li J-L, Glorius F (2014) Chem Eur J 20:3874

    CAS  Google Scholar 

  19. Romero NA, Nicewicz DA (2016) Chem Rev 116:10075

    CAS  Google Scholar 

  20. Levin MD, Kim S, Toste FD (2016) ACS Cent Sci 2:293

    CAS  Google Scholar 

  21. Tucker JW, Stephenson CRJ (2012) J Org Chem 77:1617

    CAS  Google Scholar 

  22. Dexter DL (1953) J Chem Phys 21:836

    CAS  Google Scholar 

  23. Sameera WMC, Maseras F (2012) WIREs Comp Mol Sci 2:375

    CAS  Google Scholar 

  24. Thiel W (2014) Angew Chem Int Ed 53:8605

    CAS  Google Scholar 

  25. Sperger T, Sanhueza JA, Kalvet I, Schoenebec F (2015) Chem Rev 115:9532

    CAS  Google Scholar 

  26. Seihwan A, Hong M, Sundarajan M, Ess DH, Baik MH (2019) Chem Rev 119:6509

    Google Scholar 

  27. Ross BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  28. Finley J, Malmqvist P-Ã…, Roos BO (2011) Chem Phys Lett 288:299

    Google Scholar 

  29. Daniel C (2015) Coord Chem Rev 282:19

    Google Scholar 

  30. Santoro F, Jacquemin D (2016) WIREs Comp Mol Sci 6:460

    CAS  Google Scholar 

  31. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Verlag GmbH, Weinheim, pp 41–64

    Google Scholar 

  32. Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC (2015) J Am Chem Soc 137:4896

    CAS  Google Scholar 

  33. Lim C-H, Kudisch M, Liu B, Mikaye GM (2018) J Am Chem Soc 140:7667

    CAS  Google Scholar 

  34. Qi Z-H, Ma J (2018) ACS Catal 8:1456

    CAS  Google Scholar 

  35. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    CAS  Google Scholar 

  36. Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA (2016) Acc Chem Res 49:1429

    CAS  Google Scholar 

  37. Karakaya I, Primer DN, Molander GA (2015) Org Lett 17:3294

    CAS  Google Scholar 

  38. Luo J, Zhang J (2016) ACS Catal 6:873

    CAS  Google Scholar 

  39. Marcus RA (1956) J Chem Phys 24:966

    CAS  Google Scholar 

  40. Marcus RA (1993) Angew Chem Int Ed 32:1111

    Google Scholar 

  41. de Aguirre A, Funes-Ardoiz I, Maseras F (2019) Inorganics 7:32

    Google Scholar 

  42. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771

    CAS  Google Scholar 

  43. Tasker SZ, Standley EA, Jamison TF (2014) Nature 509:299

    CAS  Google Scholar 

  44. Ananikov VP (2015) ACS Catal 5:1964

    CAS  Google Scholar 

  45. Balcells D, Nova A (2018) ACS Catal 8:34

    Google Scholar 

  46. Bonney KJ, Schoenebeck F (2014) Chem Soc 43:6609

    CAS  Google Scholar 

  47. Tsou TT, Kochi JK (1979) J Am Chem Soc 101:6319

    CAS  Google Scholar 

  48. Bajo S, Kennedy AR, Sproules S, Nelson DJ (2017) Organometallics 36:1662

    CAS  Google Scholar 

  49. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC (2017) Nat Rev Chem 1:0052

    CAS  Google Scholar 

  50. Tasker SZ, Jamison TF (2015) J Am Chem Soc 137:9531

    CAS  Google Scholar 

  51. Fernández-Alvarez VM, Nappi M, Melchiorre P, Maseras F (2015) Org Lett 17:2676

    Google Scholar 

  52. Shin K, Park Y, Baik M-H, Change S (2018) Nat Chem 10:218

    CAS  Google Scholar 

  53. Orjala J, Gerwich WH (1996) J Nat Prod 59:427

    CAS  Google Scholar 

  54. Unson MD, Rose CB, Faulkner DJ, Brinen LS, Steiner JR, Clardy J (1993) J Org Chem 58:6336

    CAS  Google Scholar 

  55. Helmchen G, Wegner G (1985) Tetrahedron Lett 26:6047

    CAS  Google Scholar 

  56. Brantley SE, Molinski TF (1999) Org Lett 1:2165

    CAS  Google Scholar 

  57. Beaumont S, Ilardi EA, Monroe LR, Zakarian A (2010) J Am Chem Soc 132:1482

    Google Scholar 

  58. Gu Z, Zakarian A (2010) Angew Chemt Int Ed 49:9702

    CAS  Google Scholar 

  59. Gu Z, Herrmann AT, Zakarian A (2011) Angew Chem Int Ed 50:7136

    CAS  Google Scholar 

  60. Amatov T, Jahn U (2011) Angew Chem Int Ed 50:4542

    CAS  Google Scholar 

  61. Huo H, Wang C, Harms K, Meggers E (2015) J Am Chem Soc 137:9551

    CAS  Google Scholar 

  62. Huo H, Fu C, Harms K, Meggers E (2014) J Am Chem Soc 136:9551

    Google Scholar 

  63. Bauer EB (2012) Chem Soc Rev 41:3153

    CAS  Google Scholar 

  64. Huo H, Shen X, Wang C, Zhang L, Rose P, Chen L-A, Harms K, Marsch M, Hilt G, Meggers E (2014) Nature 515:100

    CAS  Google Scholar 

  65. Butler A, Theisen RM (2010) Coord Chem Rev 254:288

    CAS  Google Scholar 

  66. Chen J, Browne WR (2018) Coord Chem Rev 374:15

    CAS  Google Scholar 

  67. Faust BC, Zepp RG (1993) Environ Sci Technol 27:2517

    CAS  Google Scholar 

  68. Feng W, Nansheng D, Glebov EM, Pozdnyakov IP, Grivin VP, Plyusnin VF, Bazhin NM (2007) Russ Chem Bull 56:900

    CAS  Google Scholar 

  69. Falvey DE, Schuster GB (1986) J Am Chem Soc 108:7419

    CAS  Google Scholar 

  70. Glebov EM, Pozdnyakov IP, Grivin VP, Plysunin VF, Zhang X, Wu F, Deng N (2011) Photochem Photobiol Sci 10:425

    CAS  Google Scholar 

  71. Wegeberg C, Fernández-Alvarez VM, de Aguirre A, Frandsen C, Browne WR, Maseras F, McKenzie CJ (2018) J Am Chem Soc 140:14150

    CAS  Google Scholar 

  72. Wegeberg C, Lauritsen FR, Frandsen C, Mørup S, Browne WR, McKenzie CJ (2018) Chem Eur J 24:5134

    CAS  Google Scholar 

  73. Neufeldt SR, Sanford MS (2012) Acc Chem Res 45:936

    CAS  Google Scholar 

  74. Boisvert L, Goldberg KI (2012) Acc Chem Res 45:899

    CAS  Google Scholar 

  75. Bandoli G, Caputo PA, Intini FP, Sivo MF, Natile G (1997) J Am Chem Soc 119:10370

    CAS  Google Scholar 

  76. Powers DC, Ritter T (2009) Nat Chem 1:302

    CAS  Google Scholar 

  77. Bonnington KJ, Jennings MC, Puddephatt RJ (2008) Organometallics 27:6521

    CAS  Google Scholar 

  78. Fernández-Alvarez VM, Ho SKY, Britovsek GJP, Maseras F (2018) Chem Sci 9:5039

    Google Scholar 

  79. Taylor R, Law D, Sunley G, White A, Britovsek GJP (2009) Angew Chem Int Ed 48:5900

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feliu Maseras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Aguirre, A., Fernandez-Alvarez, V.M., Maseras, F. (2020). Computational Modeling of Selected Photoactivated Processes. In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_50

Download citation

Publish with us

Policies and ethics