Skip to main content

Dealing with Spin States in Computational Organometallic Catalysis

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

Abstract

The present chapter gives an overview of the intriguing effects that spin states have on catalysis and how this can (and cannot) be understood at present. For instance, highly reactive transition-metal complexes are often too fast to be trapped for characterization by spectroscopy and/or crystallography. While significant advances have been made in theory with improved density functional approximations and more efficient wavefunction methods, these have not yet progressed to the point of being robust general-purpose chemical tools. Recent developments in the application of spectroscopy and theory on catalytically (in)active transition-metal complexes are discussed together with future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DFAs:

Density functional approximations

DFT:

Density functional theory

IPEA:

Ionization potential, electron affinity

MECP:

Minimum energy crossing point

SCO:

Spin cross-over

References

  1. Swart M, Costas M (2015) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Oxford. https://doi.org/10.1002/9781118898277

    Book  Google Scholar 

  2. Schröder D, Shaik S, Schwarz H (2000) Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res 33(3):139–145

    Google Scholar 

  3. Shaik S, Chen H, Janardanan D (2011) Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nature Chem 3:19–27. https://doi.org/10.1038/nchem.943

    Article  CAS  Google Scholar 

  4. Klein JEMN, Que Jr L (2016) Biomimetic high-valent mononuclear nonheme iron-oxo chemistry. Enc Inorg Bioinorg Chem 2016:1–22. https://doi.org/10.1002/9781119951438.eibc2344

    Article  CAS  Google Scholar 

  5. McDonald AR, Que Jr L (2013) High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord Chem Rev 257:414–428. https://doi.org/10.1016/j.ccr.2012.08.002

    Article  CAS  Google Scholar 

  6. Costas M, Mehn MP, Jensen MP, Que Jr L (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939–986

    CAS  Google Scholar 

  7. Bruijnincx PC, van Koten G, Klein Gebbink RJ (2008) Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem Soc Rev 37(12):2716–2744. https://doi.org/10.1039/b707179p

    Article  CAS  Google Scholar 

  8. Ray K, Pfaff FF, Wang B, Nam W (2014) Status of reactive non-heme metal−oxygen intermediates in chemical and enzymatic reactions. J Am Chem Soc 136:13942–13958. https://doi.org/10.1021/ja507807v

    Article  CAS  Google Scholar 

  9. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Variable character of O-O and M-O bonding in side-on (η2) 1: 1 metal complexes of O2. Proc Natl Acad Sci U S A 100:3635–3640

    CAS  Google Scholar 

  10. Stepanovic S, Andjelkovic L, Zlatar M, Andjelkovic K, Gruden-Pavlovic M, Swart M (2013) Role of spin state and ligand charge in coordination patterns in complexes of 2,6-diacetylpyridinebis(semioxamazide) with 3d-block metal ions: a density functional theory study. Inorg Chem 52(23):13415–13423. https://doi.org/10.1021/ic401752n

    Article  CAS  Google Scholar 

  11. Johansson MP, Swart M (2011) Subtle effects control the polymerisation mechanism in α-diimine iron catalysts. Dalton Trans 40:8419–8428

    CAS  Google Scholar 

  12. Que Jr L (2000) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito

    Google Scholar 

  13. Crichton RR, Louro RO (2013) Practical approaches to biological inorganic chemistry. Elsevier, Amsterdam

    Google Scholar 

  14. Duboc C, Gennari M (2015) Experimental techniques for determining spin states. In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity, pp 59–83

    Google Scholar 

  15. Bernath PF (2016) Spectra of atoms and molecules (third edition). Oxford University Press, Oxford

    Google Scholar 

  16. Bren KL, Esisenberg R, Gray HB (2015) Discovery of the magnetic behavior of hemoglobin: a beginning of bioinorganic chemistry. Proc Natl Acad Sci U S A 112:13123–13127. https://doi.org/10.1073/pnas.1515704112

    Article  CAS  Google Scholar 

  17. Fraústo do Silva JJR, Williams RJP (1991) The biological chemistry of the elements. The inorganic chemistry of life. Paperback edn. Oxford University Press, Oxford

    Google Scholar 

  18. Singha A, Das PK, Dey A (2019) Resonance Raman spectroscopy and density functional theory calculations on ferrous porphyrin dioxygen adducts with different axial ligands: correlation of ground state wave function and geometric parameters with experimental vibrational frequencies. Inorg Chem 58:10704–10715. https://doi.org/10.1021/acs.inorgchem.9b00656

    Article  CAS  Google Scholar 

  19. Rao S, Bálint Š, Cossins B, Guallar V, Petrov D (2009) Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys J 96:209–216. https://doi.org/10.1529/biophysj.108.139097

    Article  CAS  Google Scholar 

  20. Wolny JA, Schünemann V, Németh Z, Vankó G (2018) Spectroscopic techniques to characterize the spin state: vibrational, optical, Mössbauer, NMR, and X-ray spectroscopy. C R Chim 21:1152–1169. https://doi.org/10.1016/j.crci.2018.10.001

    Article  CAS  Google Scholar 

  21. Jennings GK, Modi A, Elenewski JE, Ritchie CM, Nguyen T, Ellis KC, Hackett JC (2014) Spin equilibrium and O2-binding kinetics of Mycobacterium tuberculosis CYP51 with mutations in the histidine–threonine dyad. J Inorg Biochem 136:81–91. https://doi.org/10.1016/j.jinorgbio.2014.03.017

    Article  CAS  Google Scholar 

  22. Nam W (2015) Synthetic mononuclear nonheme iron−oxygen intermediates. Acc Chem Res 48:2415–2423. https://doi.org/10.1021/acs.accounts.5b00218

    Article  CAS  Google Scholar 

  23. Gamba I, Codolà Z, Lloret-Fillol J, Costas M (2017) Making and breaking of the OAO bond at iron complexes. Coord Chem Rev 334:2–24. https://doi.org/10.1016/j.ccr.2016.11.007

    Article  CAS  Google Scholar 

  24. Noh H, Cho J (2019) Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 382:126–144. https://doi.org/10.1016/j.ccr.2018.12.006

    Article  CAS  Google Scholar 

  25. Ho RYN, Roelfes G, Feringa BL, Que Jr L (1999) Raman evidence for a weakened O-O bond in mononuclear low-spin iron(III)-hydroperoxides. J Am Chem Soc 121:264–265. https://doi.org/10.1021/ja982812p

    Article  CAS  Google Scholar 

  26. Oloo WN, Meier KK, Wang Y, Shaik S, Münck E, Que Jr L (2014) Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations. Nat Commun 5:3046. https://doi.org/10.1038/ncomms4046

    Article  CAS  Google Scholar 

  27. Szabo A, Ostlund NS (1982) Modern quantum chemistry – introduction to advanced electronic structure theory. Macmillan Publishing Co., New York

    Google Scholar 

  28. Jensen F (1998) Introduction to computational chemistry. Wiley, New York

    Google Scholar 

  29. Shaik S (2016) Chemistry as a game of molecular construction: the bond-click way. Wiley, Hoboken

    Google Scholar 

  30. Ghosh A, Berg S (2014) Arrow pushing in inorganic chemistry. Wiley, Hoboken

    Google Scholar 

  31. Swart M, Güell M, Solà M (2010) Accurate description of spin states and its implications for catalysis. In: Matta CF (ed) Quantum biochemistry: electronic structure and biological activity, vol 2. Wiley-VCH, Weinheim, pp 551–583

    Google Scholar 

  32. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105:2279–2328

    CAS  Google Scholar 

  33. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity – modeled by QM/MM calculations. Chem Rev 110:949–1017

    CAS  Google Scholar 

  34. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937. https://doi.org/10.1126/science.1193478

    Article  CAS  Google Scholar 

  35. Kershaw Cook LJ, Kulmaczewski R, Mohammed R, Dudley S, Barrett SA, Little MA, Deeth RJ, Halcrow MA (2016) A unified treatment of the relationship between ligand substituents and spin state in a family of iron(II) complexes. Angew Chem Int Ed 55:4327–4331. https://doi.org/10.1002/anie.201600165

    Article  CAS  Google Scholar 

  36. Güell M, Solà M, Swart M (2010) Spin-state splittings of iron(II) complexes with trispyrazolyl ligands. Polyhedron 29(1):84–93. https://doi.org/10.1016/j.poly.2009.06.006

    Article  CAS  Google Scholar 

  37. Arroyave A, Lennartson A, Dragulescu-Andrasi A, Pedersen KS, Piligkos S, Stoian SA, Greer SM, Pak C, Hietsoi O, Phan H, Hill S, McKenzie CJ, Shatruk M (2016) Spin crossover in Fe(II) complexes with N4S2 coordination. Inorg Chem:5904–5913. https://doi.org/10.1021/acs.inorgchem.6b00246

  38. Deeth RJ, Anastasi AE, Wilcockson MJ (2010) An in silico design tool for Fe(II) spin crossover and light-induced excited spin state-trapped complexes. J Am Chem Soc 132:6876–6877

    CAS  Google Scholar 

  39. Deeth RJ (2016) Molecular discovery in spin crossover. In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Chichester, pp 85–102

    Google Scholar 

  40. Improta R, Santoro F, Blancafort L (2016) Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases. Chem Rev 116:3540–3593. https://doi.org/10.1021/acs.chemrev.5b00444

    Article  CAS  Google Scholar 

  41. Blancafort L (2014) Photochemistry and photophysics at extended seams of conical intersection. ChemPhysChem 15:3166–3181. https://doi.org/10.1002/cphc.201402359

    Article  CAS  Google Scholar 

  42. Matsika S, Krause P (2011) Nonadiabatic events and conical intersections. Ann Rev Phys Chem 62:621–643. https://doi.org/10.1146/annurev-physchem-032210-103450

    Article  CAS  Google Scholar 

  43. Matsika S, Yarkony DR (2002) Spin-orbit coupling and conical intersections. IV. A perturbative determination of the electronic energies, derivative couplings and a rigorous diabatic representation near a conical intersection. The general case. J Phys Chem B 106:8108–8116. https://doi.org/10.1021/jp020396w

    Article  CAS  Google Scholar 

  44. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Accounts 99:95–99

    CAS  Google Scholar 

  45. Bearpark MJ, Robb MA, Schlegel HB (1994) A direct method for the location of the lowest energy point on a potential surface crossing. Chem Phys Lett 223:269–274. https://doi.org/10.1016/0009-2614(94)00433-1

    Article  CAS  Google Scholar 

  46. Gaggioli CA, Belpassi L, Tarantelli F, Harvey JN, Belanzoni P (2018) Spin-forbidden reactions: adiabatic transition states using spin-orbit coupled density functional theory. Chem Eur J 24:5006–5015. https://doi.org/10.1002/chem.201704608

    Article  CAS  Google Scholar 

  47. Zhu Q, Materer NF (2010) Singlet–triplet spin–orbit coupling and crossing probability for the single-dimer cluster model of a Si(1 0 0) surface. Chem Phys Lett 496:270–275. https://doi.org/10.1016/j.cplett.2010.07.055

    Article  CAS  Google Scholar 

  48. Takayanagi T, Nakatomi T (2018) Automated reaction path searches for spin-forbidden reactions. J Comput Chem 39:1319–1326. https://doi.org/10.1002/jcc.25202

    Article  CAS  Google Scholar 

  49. Harabuchi Y, Hatanaka M, Maeda S (2019) Exploring approximate geometries of minimum energy conical intersections by TDDFT calculations. Chem Phys Lett X 2:100007. https://doi.org/10.1016/j.cpletx.2019.100007

    Article  CAS  Google Scholar 

  50. Merlini ML, Britovsek GJP, Swart M, Belanzoni P (2018) Understanding the catalase-like activity of a bio-inspired manganese(II) complex with a pentadentate NSNSN ligand framework. A computational insight into the mechanism. ACS Catal 8:2944–2958. https://doi.org/10.1021/acscatal.7b03559

    Article  CAS  Google Scholar 

  51. Cho K-B, Hirao H, Shaik S, Nam W (2016) To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal–oxo complexes. Chem Soc Rev 45:1197–1210. https://doi.org/10.1039/c5cs00566c

    Article  CAS  Google Scholar 

  52. Assmann M, Weinacht T, Matsika S (2016) Surface hopping investigation of the relaxation dynamics in radical cations. J Chem Phys 144:034301. https://doi.org/10.1063/1.4939842

    Article  CAS  Google Scholar 

  53. Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071. https://doi.org/10.1063/1.459170

    Article  CAS  Google Scholar 

  54. Mai S, Marquetand P, González L (2018) Nonadiabatic dynamics: the SHARC approach. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1370

  55. Gaggioli CA, Belpassi L, Tarantelli F, Zuccaccia D, Harvey JN, Belanzoni P (2016) Dioxygen insertion into the gold(I)–hydride bond: spin orbit coupling effects in the spotlight for oxidative addition. Chem Sci 7:7034–7039. https://doi.org/10.1039/C6SC02161A

    Article  CAS  Google Scholar 

  56. Yang B, Gagliardi L, Truhlar DG (2018) Transition states of spin-forbidden reactions. Phys Chem Chem Phys 20:4129–4136. https://doi.org/10.1039/c7cp07227a

    Article  CAS  Google Scholar 

  57. Ricciarelli D, Belpassi L, Harvey JN, Belanzoni P (2020) Spin-forbidden reactivity of transition metal Oxo species: exploring the potential energy surfaces. Chem Eur J 26:3080–3089. https://doi.org/10.1002/chem.201904314

    Article  CAS  Google Scholar 

  58. Cramer CJ (2004) Essentials of computational chemistry: theories and models.2nd edn. Wiley, New York

    Google Scholar 

  59. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  60. Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33:8822–8824. Erratum: Ibid. 8834, 7406

    CAS  Google Scholar 

  61. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  62. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximations made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  64. Swart M, Bickelhaupt FM, Duran M (2010) Popularity polls density functionals. https://www.marcelswart.eu/dft-poll

  65. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Free energy of spin-crossover complexes calculated with density functional methods. Inorg Chem 40:2201–2203

    CAS  Google Scholar 

  66. Kepp KP (2013) Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord Chem Rev 257:196–209. https://doi.org/10.1016/j.ccr.2012.04.020

    Article  CAS  Google Scholar 

  67. Reiher M, Salomon O, Hess BA (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Accounts 107:48–55

    CAS  Google Scholar 

  68. Reiher M (2002) Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg Chem 41:6928–6935

    CAS  Google Scholar 

  69. Swart M, Ehlers AW, Lammertsma K (2004) Performance of the OPBE exchange-correlation functional. Mol Phys 102:2467–2474

    CAS  Google Scholar 

  70. Swart M, Groenhof AR, Ehlers AW, Lammertsma K (2004) Validation of exchange-correlation functionals for spin states of iron-complexes. J Phys Chem A 108:5479–5483

    CAS  Google Scholar 

  71. Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys 99(5):403–412

    CAS  Google Scholar 

  72. Zhang Y, Yang W (1998) Comment on “generalized gradient approximation made simple”. Phys Rev Lett 80:890. https://doi.org/10.1103/PhysRevLett.80.890

    Article  CAS  Google Scholar 

  73. Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103

    Google Scholar 

  74. Swart M (2013) A new family of hybrid density functionals. Chem Phys Lett 580:166–171. https://doi.org/10.1016/j.cplett.2013.06.045

    Article  CAS  Google Scholar 

  75. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta- generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401

    Google Scholar 

  76. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124(3):034108. https://doi.org/10.1063/1.2148954

    Article  CAS  Google Scholar 

  77. Prokopiou G, Kronik L (2018) Spin-state energetics of Fe complexes from an optimally tuned range-separated hybrid functional. Chem Eur J 24:5173–5182. https://doi.org/10.1002/chem.201704014

    Article  CAS  Google Scholar 

  78. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    CAS  Google Scholar 

  79. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372. https://doi.org/10.1080/00268976.2017.1333644

    Article  CAS  Google Scholar 

  80. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320. https://doi.org/10.1021/cr200107z

    Article  CAS  Google Scholar 

  81. Rappoport D, Crawford NRM, Furche F, Burke K (2009) Approximate density functionals: which should i choose? Enc Inorg Chem. https://doi.org/10.1002/0470862106.ia615

  82. Pinter B, Chankisjijev A, Geerlings P, Harvey JN, De Proft F (2018) Conceptual insights into DFT spin-state energetics of octahedral transition-metal complexes through a density difference analysis. Chem Eur J 24:5281–5292. https://doi.org/10.1002/chem.201704657

    Article  CAS  Google Scholar 

  83. Swart M, Solà M, Bickelhaupt FM (2007) Energy landscapes of nucleophilic substitution reactions: a comparison of density functional theory and coupled cluster methods. J Comput Chem 28(9):1551–1560. https://doi.org/10.1002/jcc.20653

    Article  CAS  Google Scholar 

  84. Swart M, Solà M, Bickelhaupt FM (2009) Switching between OPTX and PBE exchange functionals. J Comp Method Sci Eng 9:69–77

    CAS  Google Scholar 

  85. Swart M, Gruden M (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2690–2697. https://doi.org/10.1021/acs.accounts.6b00271

    Article  CAS  Google Scholar 

  86. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  87. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  88. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228

    CAS  Google Scholar 

  89. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577:1. https://doi.org/10.1063/1.1390175

    Article  CAS  Google Scholar 

  90. Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    CAS  Google Scholar 

  91. Leininger T, Stoll H, Werner H-J, Savin A (1997) Combining long-range configuration interaction with short-range density functionals. Chem Phys Lett 275:151–160. https://doi.org/10.1016/S0009-2614(97)00758-6

    Article  CAS  Google Scholar 

  92. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  93. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109. https://doi.org/10.1063/1.2409292

    Article  CAS  Google Scholar 

  94. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  Google Scholar 

  95. Brémond E, Ciofini I, Sancho-García JC, Adamo C (2016) Nonempirical double-hybrid functionals: an effective tool for chemists. Acc Chem Res 49:1503–1513. https://doi.org/10.1021/acs.accounts.6b00232

    Article  CAS  Google Scholar 

  96. Reiher M, Wolf A (2015) Relativistic quantum chemistry (second edition). Wiley, Weinheim

    Google Scholar 

  97. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  98. Reiher M (2006) Douglas–Kroll–Hess theory: a relativistic electrons-only theory for chemistry. Theor Chem Accounts 116:241–252. https://doi.org/10.1007/s00214-005-0003-2

    Article  CAS  Google Scholar 

  99. Nakajima T, Hirao K (2012) The Douglas-Kroll-Hess approach. Chem Rev 112:385–402. https://doi.org/10.1021/cr200040s

    Article  CAS  Google Scholar 

  100. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805. https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

  101. Pye CC, Ziegler T (1999) An implementation of the conductor-like screening model of solvation within the ADF package. Theor Chem Accounts 101:396–408. https://doi.org/10.1007/s002140050457

    Article  CAS  Google Scholar 

  102. Tomasi J (2004) Thirty years of continuum solvation chemistry: a review, and prospects for the near future. Theor Chem Accounts 112:184–203

    CAS  Google Scholar 

  103. Gaus M, Chou C-P, Witek H, Elstner M (2009) Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. J Phys Chem A 113:11866–11881

    CAS  Google Scholar 

  104. Gaus M, Cui Q, Elstner M (2011) DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J Chem Theor Comput 7:931–948. https://doi.org/10.1021/ct100684s

    Article  CAS  Google Scholar 

  105. Gaus M, Cui Q, Elstner M (2014) Density functional tight binding: application to organic and biological molecules. WIREs Comput Mol Sci 4:49–61. https://doi.org/10.1002/wcms.1156

    Article  CAS  Google Scholar 

  106. Elstner M, Seifert G (2014) Density functional tight binding. Philos Trans R Soc A 372:20120483. https://doi.org/10.1098/rsta.2012.0483

    Article  CAS  Google Scholar 

  107. Vujović M, Huynh M, Steiner S, Garcia-Fernandez P, Elstner M, Cui Q, Gruden M (2019) Exploring the applicability of density functional tight binding to transition metal ions. Parameterization for nickel with the spin-polarized DFTB3 model. J Comput Chem 40:400–413. https://doi.org/10.1002/jcc.25614

    Article  CAS  Google Scholar 

  108. Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comp 15:1652–1671. https://doi.org/10.1021/acs.jctc.8b01176

    Article  CAS  Google Scholar 

  109. Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J Chem Theor Comput 13:1989–2009. https://doi.org/10.1021/acs.jctc.7b00118

    Article  CAS  Google Scholar 

  110. Swart M (2007) Metal-ligand bonding in metallocenes: differentiation between spin state, electrostatic and covalent bonding. Inorg Chim Acta 360(1):179–189. https://doi.org/10.1016/j.ica.2006.07.073

    Article  CAS  Google Scholar 

  111. Swart M (2013) Spin states of (bio)inorganic systems: successes and pitfalls. Int J Quantum Chem 113:2–7. https://doi.org/10.1002/qua.24255

    Article  CAS  Google Scholar 

  112. Harvey JN (2014) Spin-forbidden reactions: computational insight into mechanisms and kinetics. WIREs Comput Mol Sci 4:1–14

    CAS  Google Scholar 

  113. Klopper W, Lüthi HP (1996) Towards the accurate computation of properties of transition metal compounds: the binding energy of ferrocene. Chem Phys Lett 262:546–552

    CAS  Google Scholar 

  114. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, Chichester

    Google Scholar 

  115. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark P-O (2016) Multiconfigurational quantum chemistry. Wiley, Hoboken

    Google Scholar 

  116. Marti KH, Reiher M (2010) The density matrix renormalization group algorithm in quantum chemistry. Z Phys Chem 224:583–599. https://doi.org/10.1524/zpch.2010.6125

    Article  CAS  Google Scholar 

  117. Keller SF, Reiher M (2014) Determining factors for the accuracy of DMRG in chemistry. Chimia 68:200–203. https://doi.org/10.2533/chimia.2014.200

    Article  CAS  Google Scholar 

  118. Li Manni G, Alavi A (2018) Understanding the mechanism stabilizing intermediate spin states in Fe(II)-porphyrin. J Phys Chem A 122:4935–4947. https://doi.org/10.1021/acs.jpca.7b12710

    Article  CAS  Google Scholar 

  119. Vogiatzis KD, Manni GL, Stoneburner SJ, Ma D, Gagliardi L (2015) Systematic expansion of active spaces beyond the CASSCF limit: a GASSCF/SplitGAS benchmark study. J Chem Theor Comput 11:3010–3021. https://doi.org/10.1021/acs.jctc.5b00191

    Article  CAS  Google Scholar 

  120. Hermes MR, Gagliardi L (2019) Multiconfigurational self-consistent field theory with density matrix embedding: the localized active space self-consistent field method. J Chem Theor Comput 15:972–986. https://doi.org/10.1021/acs.jctc.8b01009

    Article  CAS  Google Scholar 

  121. Li C, Lindh R, Evangelista FA (2019) Dynamically weighted multireference perturbation theory: combining the advantages of multi-state and state-averaged methods. J Chem Phys 150:144107. https://doi.org/10.1063/1.5088120

    Article  CAS  Google Scholar 

  122. Via-Nadal M, Rodríguez-Mayorga M, Ramos-Cordoba E, Matito E (2019) Singling out dynamic and nondynamic correlation. J Phys Chem Lett 10:4032–4037. https://doi.org/10.1021/acs.jpclett.9b01376

    Article  CAS  Google Scholar 

  123. Ghigo G, Roos BO, Malmqvist PA (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149. https://doi.org/10.1016/j.cplett.2004.08.032

    Article  CAS  Google Scholar 

  124. Kepenekian M, Robert V, Le Guennic B (2009) What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures? J Chem Phys 131:114702. https://doi.org/10.1063/1.3211020

    Article  CAS  Google Scholar 

  125. Suaud N, Bonnet M-L, Boilleau C, Labèguerie P, Guihéry N (2009) Light-induced excited spin state trapping: Ab initio study of the physics at the molecular level. J Am Chem Soc 131:715–722. https://doi.org/10.1021/ja805626s

    Article  CAS  Google Scholar 

  126. Daku LML, Aquilante F, Robinson TW, Hauser A (2012) Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+ (M = Fe, Co). J Chem Theor Comput 8:4216–4231. https://doi.org/10.1021/ct300592w

    Article  CAS  Google Scholar 

  127. Ma Y, Bandeira NAG, Robert V, Gao E-Q (2011) Experimental and theoretical studies on the magnetic properties of manganese(II) compounds with mixed isocyanate and carboxylate bridges. Chem Eur J 17:1988–1998. https://doi.org/10.1002/chem.201002243

    Article  CAS  Google Scholar 

  128. Radon M, Rejmak P, Fitta M, Bałanda M, Szklarzewicz J (2015) How can [MoIV(CN)6]2−, an apparently octahedral (d)2 complex, be diamagnetic? Insights from quantum chemical calculations and magnetic susceptibility measurements. Phys Chem Chem Phys 17:14890–14902. https://doi.org/10.1039/c4cp04863f

    Article  CAS  Google Scholar 

  129. Rudavskyi A, Sousa C, de Graaf C, Havenith RWA, Broer R (2014) Computational approach to the study of thermal spin crossover phenomena. J Chem Phys 140:184318. https://doi.org/10.1063/1.4875695

    Article  CAS  Google Scholar 

  130. Zobel JP, Nogueira JJ, González L (2017) The IPEA dilemma in CASPT2. Chem Sci 8:1482–1499. https://doi.org/10.1039/C6SC03759C

    Article  CAS  Google Scholar 

  131. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J-P (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114:10252–10264

    CAS  Google Scholar 

  132. Phung QM, Wouters S, Pierloot K (2016) Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J Chem Theory Comp 12:4352–4361. https://doi.org/10.1021/acs.jctc.6b00714

    Article  CAS  Google Scholar 

  133. Phung QM, Feldt M, Harvey JN, Pierloot K (2018) Toward highly accurate spin state energetics in first-row transition metal complexes: a combined CASPT2/CC approach. J Chem Theor Comput 14:2446–2455. https://doi.org/10.1021/acs.jctc.8b00057

    Article  CAS  Google Scholar 

  134. Li Manni G, Kats D, Tew DP, Alavi A (2019) Role of valence and semicore electron correlation on spin gaps in Fe(II)-porphyrins. J Chem Theor Comput 15:1492–1497. https://doi.org/10.1021/acs.jctc.8b01277

    Article  CAS  Google Scholar 

  135. Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphin. J Chem Phys 30:1139–1161. https://doi.org/10.1063/1.1730148

    Article  CAS  Google Scholar 

  136. Baerends EJ, Ricciardi G, Rosa A, van Gisbergen SJA (2002) A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord Chem Rev 230:5–27

    CAS  Google Scholar 

  137. Andersson K, Roos BO (1992) Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory. Chem Phys Lett 191:507–514. https://doi.org/10.1016/0009-2614(92)85581-T

    Article  CAS  Google Scholar 

  138. Saitow M, Becker U, Riplinger C, Valeev EF, Neese F (2017) A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J Chem Phys 146:164105. https://doi.org/10.1063/1.4981521

    Article  CAS  Google Scholar 

  139. Flöser BM, Guo Y, Riplinger C, Tuczek F, Neese F (2020) Detailed pair natural orbital-based coupled cluster studies of spin crossover energetics. J Chem Theor Comput 16:2224–2235. https://doi.org/10.1021/acs.jctc.9b01109

    Article  CAS  Google Scholar 

  140. Kats D, Manby FR (2013) The distinguishable cluster approximation. J Chem Phys 139:021102. https://doi.org/10.1063/1.4813481

    Article  CAS  Google Scholar 

  141. Pierloot K, Phung QM, Domingo A (2017) Spin state energetics in first-row transition metal complexes: contribution of (3s3p) correlation and its description by second-order perturbation theory. J Chem Theor Comput 13:537–553. https://doi.org/10.1021/acs.jctc.6b01005

    Article  CAS  Google Scholar 

  142. Swart M, Bickelhaupt FM (2008) QUILD: QUantum-regions interconnected by local descriptions. J Comput Chem 29(5):724–734. https://doi.org/10.1002/jcc.20834

    Article  CAS  Google Scholar 

  143. Li Manni G, Carlson RK, Luo S, Ma D, Olsen J, Truhlar DG, Gagliardi L (2014) Multiconfiguration pair-density functional theory. J Chem Theor Comput 10:3669–3680. https://doi.org/10.1021/ct500483t

    Article  CAS  Google Scholar 

  144. Sharma P, Bernales V, Knecht S, Truhlar DG, Gagliardi L (2019) Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet–triplet gaps in polyacenes and polyacetylenes. Chem Sci 10:1716–1723. https://doi.org/10.1039/C8SC03569E

    Article  CAS  Google Scholar 

  145. Houghton BJ, Deeth RJ (2014) Spin-state energetics of FeII complexes - the continuing voyage through the density functional minefield. Eur J Inorg Chem 2014:4573–4580. https://doi.org/10.1002/ejic.201402253

    Article  CAS  Google Scholar 

  146. Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theor Comput 4:2057–2066

    CAS  Google Scholar 

  147. Swart M, Güell M, Luis JM, Solà M (2010) Spin-state-corrected gaussian-type orbital basis sets. J Phys Chem A 114(26):7191–7197. https://doi.org/10.1021/jp102712z

    Article  CAS  Google Scholar 

  148. Swart M, Güell M, Solà M (2011) A multi-scale approach to spin crossover in Fe(II) compounds. Phys Chem Chem Phys 13:10449–10456

    CAS  Google Scholar 

  149. Swart M (2013) A change in oxidation state of iron: scandium is not innocent. Chem Commun 49:6650–6652. https://doi.org/10.1039/C3CC42200C

    Article  CAS  Google Scholar 

  150. Paulsen H, Duelund L, Zimmermann A, Averseng F, Gerdan M, Winkler H, Toftlund H, Trautwein AX (2003) Substituent effects on the spin-transition temperature in complexes with tris(pyrazolyl) ligands. Monatsh Chemie 134:295–306

    CAS  Google Scholar 

  151. Paulsen H, Trautwein AX (2004) Calculation of the electronic energy differences of spin crossover complexes. J Phys Chem Solids 65:793–798

    CAS  Google Scholar 

  152. Jensen KP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47:10357–10365

    CAS  Google Scholar 

  153. Harvey JN, Aschi M (2003) Modelling spin-forbidden reactions: recombination of carbon monoxide with iron tetracarbonyl. Faraday Discuss 124:129–143. https://doi.org/10.1039/b211871h

    Article  CAS  Google Scholar 

  154. Harvey JN (2004) DFT computation of relative spin-state energetics of transition metal compounds. Struct Bond 112:151–183

    CAS  Google Scholar 

  155. Harvey JN (2006) On the accuracy of density functional theory in transition metal chemistry. Annu Rep Prog Chem Sect C Phys Chem 102:203–226

    CAS  Google Scholar 

  156. Rokob TA, Srnec M, Rulisek L (2012) Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives. Dalton Trans 41:5754–5768. https://doi.org/10.1039/c2dt12423h

    Article  CAS  Google Scholar 

  157. Rokob TA, Chalupský J, Bím D, Andrikopoulos PC, Srnec M, Rulíšek L (2016) Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 21:619–644. https://doi.org/10.1007/s00775-016-1357-8

    Article  CAS  Google Scholar 

  158. Verma P, Varga Z, Klein JEMN, Cramer CJ, Que Jr L, Truhlar DG (2017) Assessment of electronic structure methods for the determination of the ground spin states of Fe(II), Fe(III) and Fe(IV) complexes. Phys Chem Chem Phys 19:13049–13069. https://doi.org/10.1039/C7CP01263B

    Article  CAS  Google Scholar 

  159. Cirera J, Via-Nadal M, Ruiz E (2018) Benchmarking density functional methods for calculation of state energies of first row spin-crossover molecules. Inorg Chem 57:14097–14105. https://doi.org/10.1021/acs.inorgchem.8b01821

    Article  CAS  Google Scholar 

  160. Ray K, Duboc C (2018) ECOSTBio: explicit control over spin states in technology and biochemistry. Chem Eur J 24:5003–5005. https://doi.org/10.1002/chem.201801041

    Article  CAS  Google Scholar 

  161. Kal S, Xu S, Que Jr L (2020) Bio-inspired nonheme iron oxidation catalysis. Growing evidence for the involvement of oxoiron(V) oxidants in cleaving strong C–H bonds. Angew Chem Int Ed 59:7332–7349. https://doi.org/10.1002/anie.201906551

    Article  CAS  Google Scholar 

  162. Radon M (2019) Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Phys Chem Chem Phys 21:4854–4870. https://doi.org/10.1039/c9cp00105k

    Article  CAS  Google Scholar 

  163. Arbuznikov AV, Kaupp M (2014) Towards improved local hybrid functionals by calibration of exchange-energy densities. J Chem Phys 141:204101. https://doi.org/10.1063/1.4901238

    Article  CAS  Google Scholar 

  164. Yu HS, He X, Li SL, Truhlar DG (2016) MN15: a Kohn–Sham global-hybrid exchange– correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem Sci 7:5032–5051. https://doi.org/10.1039/c6sc00705h

    Article  CAS  Google Scholar 

  165. Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Natl Acad Sci U S A 112:685–689. https://doi.org/10.1073/pnas.1423145112

    Article  CAS  Google Scholar 

  166. Feldt M, Phung QM, Pierloot K, Mata RA, Harvey JN (2019) Limits of coupled-cluster calculations for non-heme iron complexes. J Chem Theor Comput 15:922–937. https://doi.org/10.1021/acs.jctc.8b00963

    Article  CAS  Google Scholar 

  167. Chen H, Lai W, Shaik S (2010) Exchange-enhanced H-abstraction reactivity of high-valent nonheme iron(IV)-Oxo from coupled cluster and density functional theories. J Phys Chem Lett 1:1533–1540. https://doi.org/10.1021/jz100359h

    Article  CAS  Google Scholar 

  168. Phung QM, Martín-Fernańdez C, Harvey JN, Feldt M (2019) Ab initio calculations for spin-gaps of non-heme iron complexes. J Chem Theor Comput 15:4297–4304. https://doi.org/10.1021/acs.jctc.9b00370

    Article  CAS  Google Scholar 

  169. Cao L, Ryde U (2018) Influence of the protein and DFT method on the broken-symmetry and spin states in nitrogenase. Int J Quantum Chem 118:e25627. https://doi.org/10.1002/qua.25627

    Article  CAS  Google Scholar 

  170. Cao L, Caldararu O, Ryde U (2018) Protonation and reduction of the FeMo cluster in nitrogenase studied by quantum mechanics/molecular mechanics (QM/MM) calculations. J Chem Theor Comput 14:6653–6678. https://doi.org/10.1021/acs.jctc.8b00778

    Article  CAS  Google Scholar 

  171. Cao L, Caldararu O, Ryde U (2017) Protonation states of homocitrate and nearby residues in nitrogenase studied by computational methods and quantum refinement. J Phys Chem B 121:8242–8262. https://doi.org/10.1021/acs.jpcb.7b02714

    Article  CAS  Google Scholar 

  172. Cao L, Ryde U (2019) Extremely large differences in DFT energies for nitrogenase models. Phys Chem Chem Phys 21:2480–2488. https://doi.org/10.1039/C8CP06930A

    Article  CAS  Google Scholar 

  173. Roithova J (2016) Multiple spin-state scenarios in gas-phase reactions. In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Chichester, pp 157–183

    Google Scholar 

  174. Zhang Q, Bowers MT (2004) Activation of methane by MH+ (M = Fe, Co, and Ni): a combined mass spectrometric and DFT study. J Phys Chem A 108:9755–9761. https://doi.org/10.1021/jp047943t

    Article  CAS  Google Scholar 

  175. Schwarz H (2004) On the spin-forbiddeness of gas-phase ion–molecule reactions: a fruitful intersection of experimental and computational studies. Int J Mass Spectrom 237:75–105. https://doi.org/10.1016/j.ijms.2004.06.006

    Article  CAS  Google Scholar 

  176. Shaik S, de Visser SP, Ogliaro F, Schwarz H, Schroder D (2002) Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr Opin Chem Biol 6(5):556–567

    CAS  Google Scholar 

  177. Usharani D, Wang B, Sharon DA, Shaik S (2015) Principles and prospects of spin-states reactivity in chemistry and bioinorganic chemistry. In: Swart M, Costas M (eds) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Oxford, pp 131–156. https://doi.org/10.1002/9781118898277.ch7

    Chapter  Google Scholar 

  178. Janardanan D, Usharani D, Shaik S (2012) The origins of dramatic axial ligand effects: closed-shell MnVO complexes use exchange-enhanced open-shell states to mediate efficient H abstraction reactions. Angew Chem Int Ed 51:4421–4425. https://doi.org/10.1002/anie.201200689

    Article  CAS  Google Scholar 

  179. Saouma CT, Mayer JM (2014) Do spin state and spin density affect hydrogen atom transfer reactivity? Chem Sci 5:21–31. https://doi.org/10.1039/C3SC52664J

    Article  CAS  Google Scholar 

  180. Kazaryan A, Baerends EJ (2015) Ligand field effects and the high spin–high reactivity correlation in the H abstraction by non-heme iron(IV)–Oxo complexes: a DFT frontier orbital perspective. ACS Catal 5:1475–1488. https://doi.org/10.1021/cs501721y

    Article  CAS  Google Scholar 

  181. Kleespies ST, Oloo WN, Mukherjee A, Que Jr L (2015) C−H bond cleavage by bioinspired nonheme oxoiron(IV) complexes, including hydroxylation of n-butane. Inorg Chem 54:5053–5064. https://doi.org/10.1021/ic502786y

    Article  CAS  Google Scholar 

  182. Padamati SK, Angelone D, Draksharapu A, Primi G, Martin DJ, Tromp M, Swart M, Browne WR (2017) Transient formation and reactivity of a high-valent nickel(IV) oxido complex. J Am Chem Soc 139:8718–8724. https://doi.org/10.1021/jacs.7b04158

    Article  CAS  Google Scholar 

  183. Unjaroen D, Swart M, Browne WR (2017) Electrochemical polymerization of iron(III) polypyridyl complexes through C-C coupling of redox non-innocent phenolato ligands. Inorg Chem 56:470–479. https://doi.org/10.1021/acs.inorgchem.6b02378

    Article  CAS  Google Scholar 

  184. Chen J, Draksharapu A, Angelone D, Unjaroen D, Padamati SK, Hage R, Swart M, Duboc C, Browne WR (2018) H2O2 oxidation by FeIII-OOH intermediates and its impact on catalytic efficiency. ACS Catal 8:9665–9674. https://doi.org/10.1021/acscatal.8b02326

    Article  CAS  Google Scholar 

  185. Serrano-Plana J, Oloo WN, Acosta-Rueda L, Meier KK, Verdejo B, Garcia-Espana E, Basallote MG, Munck E, Que Jr L, Company A, Costas M (2015) Trapping a highly reactive nonheme iron intermediate that oxygenates strong C-H bonds with stereoretention. J Am Chem Soc 137(50):15833–15842. https://doi.org/10.1021/jacs.5b09904

    Article  CAS  Google Scholar 

  186. Fan R, Serrano-Plana J, Oloo WN, Draksharapu A, Delgado-Pinar E, Company A, Martin-Diaconescu V, Borrell M, Lloret-Fillol J, Garcia-Espana E, Guo Y, Bominaar EL, Que Jr L, Costas M, Munck E (2018) Spectroscopic and DFT characterization of a highly reactive nonheme Fe(V)-Oxo intermediate. J Am Chem Soc 140(11):3916–3928. https://doi.org/10.1021/jacs.7b11400

    Article  CAS  Google Scholar 

  187. Mondal B, Neese F, Bill E, Ye S (2018) Electronic structure contributions of non-heme oxo-iron(V) complexes to the reactivity. J Am Chem Soc 140(30):9531–9544. https://doi.org/10.1021/jacs.8b04275

    Article  CAS  Google Scholar 

  188. Zima AM, Lyakin OY, Bryliakov KP, Talsi EP (2019) High-spin and low-spin perferryl intermediates in Fe(PDP)-catalyzed epoxidations. ChemCatChem. https://doi.org/10.1002/cctc.201900842

  189. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Google Scholar 

  190. Rohde JU, In JH, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Munck E, Nam W, Que Jr L (2003) Crystallographic and spectroscopic characterization of a nonheme Fe(IV)-O complex. Science 299(5609):1037–1039. https://doi.org/10.1126/science.299.5609.1037

    Article  CAS  Google Scholar 

  191. Klein JEMN, Dereli B, Que Jr L, Cramer CJ (2016) Why metal–oxos react with dihydroanthracene and cyclohexadiene at comparable rates, despite having different C–H bond strengths. A computational study. Chem Commun 52:10509–10512. https://doi.org/10.1039/c6cc05395e

    Article  CAS  Google Scholar 

  192. Hammes-Schiffer S (2001) Theoretical perspectives on proton-coupled electron transfer reactions. Acc Chem Res 34:273–281. https://doi.org/10.1021/ar9901117

    Article  CAS  Google Scholar 

  193. Mayer JM (2011) Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc Chem Res 44:36–46. https://doi.org/10.1021/ar100093z

    Article  CAS  Google Scholar 

  194. Hammes-Schiffer S (2015) Proton-coupled electron transfer: moving together and charging forward. J Am Chem Soc 137:8860–8871. https://doi.org/10.1021/jacs.5b04087

    Article  CAS  Google Scholar 

  195. Klein JEMN, Knizia G (2018) cPCET versus HAT: a direct theoretical method for distinguishing X–H bond-activation mechanisms. Angew Chem Int Ed 57:11913–11917. https://doi.org/10.1002/anie.201805511

    Article  CAS  Google Scholar 

  196. Knizia G (2013) Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J Chem Theor Comput 9:4834–4843. https://doi.org/10.1021/ct400687b

    Article  CAS  Google Scholar 

  197. Knizia G, Klein JEMN (2015) Electron flow in reaction mechanisms-revealed from first principles. Angew Chem Int Ed 54:5518–5522. https://doi.org/10.1002/anie.201410637

    Article  CAS  Google Scholar 

  198. Monte Pérez I, Engelmann X, Lee Y-M, Yoo M, Kumaran E, Farquhar ER, Bill E, England J, Nam W, Swart M, Ray K (2017) A highly reactive oxoiron(IV) complex supported by a bioinspired N3O macrocyclic ligand. Angew Chem Int Ed 56:14384–14388. https://doi.org/10.1002/anie.201707872

    Article  CAS  Google Scholar 

  199. D’Amore L, Ray K, Swart M (2020) In preparation

    Google Scholar 

  200. Engelmann X, Malik DD, Corona T, Warm K, Farquhar ER, Swart M, Nam W, Ray K (2019) Trapping of a highly reactive oxoiron(IV) complex in the catalytic epoxidation of olefins by hydrogen peroxide. Angew Chem Int Ed 58:4012–4016. https://doi.org/10.1002/anie.201812758

    Article  CAS  Google Scholar 

  201. Corona T, Ray K, Engelmann X, Swart M (2020) In preparation

    Google Scholar 

  202. Raffard N, Carina R, Simaan AJ, Sainton J, Riviere E, Tchertanov L, Bourcier S, Bouchoux G, Delroisse M, Banse F, Girerd JJ (2001) Biomimetic catalysis of catechol cleavage by O-2 in organic solvents - role of accessibility of O-2 to Fe-III in 2,11-diaza 3,3 (2,6)pyridinophane-type catalysts. Eur J Inorg Chem 9:2249–2254

    Google Scholar 

  203. Stepanovic S, Angelone D, Gruden M, Swart M (2017) The role of spin states in catalytic mechanism of the intra- and extradiol cleavage of catechols by O2. Org Biomol Chem 15:7860–7868. https://doi.org/10.1039/c7ob01814b

    Article  CAS  Google Scholar 

  204. Doctrow SR, Huffman K, Bucay Marcus C, Tocco G, Malfroy E, Adinolfi CA, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–4558. https://doi.org/10.1021/jm020207y

    Article  CAS  Google Scholar 

  205. Romero-Rivera A, Swart M (2020) Study on the catalase activity of a Mn(III)-salen complex. In preparation

    Google Scholar 

  206. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    CAS  Google Scholar 

  207. Doctrow SR, Liesa M, Melov S, Shirihai OS, Tofilon P (2012) Salen Mn complexes are superoxide dismutase/catalase mimetics that protect the mitochondria. Curr Inorg Chem 2:325–334

    CAS  Google Scholar 

  208. Grau M, Rigodanza F, White AJP, Sorarù A, Carraro M, Bonchio M, Britovsek GJP (2014) Ligand tuning of single-site manganese-based catalytic antioxidants with dual superoxide dismutase and catalase activity. Chem Commun 50:4607–4609

    CAS  Google Scholar 

  209. Abashkin YG, Burt SK (2005) (salen)MnIII compounds as nonpeptidyl mimics of catalase. Mechanism-based tuning of catalase activity: a theoretical study. Inorg Chem 44:1425–1432

    CAS  Google Scholar 

Download references

Acknowledgments

MINECO (CTQ2014-59212-P, CTQ2017-87392-P), FEDER (UNGI10-4E-801), and the COST Association (CM1305, ECOSTBio) are gratefully thanked for financial support, and CSUC is thanked for extensive computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Swart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swart, M. (2020). Dealing with Spin States in Computational Organometallic Catalysis. In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_49

Download citation

Publish with us

Policies and ethics