Skip to main content

Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP)

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

Abstract

The field of organometallic chemistry has tremendously grown over the past decades and become an integral part of many areas of chemistry and beyond. Organometallic compounds find a wide use in synthesis, where organometallic compounds are utilized as homogeneous/heterogeneous catalysts or as stoichiometric reagents. In particular, modifying and fine-tuning organometallic catalysts has been at the focus. This requires an in-depth understanding of the complex metal–ligand (ML) interactions which are playing a key role in determining the diverse properties and rich chemistry of organometallic compounds. We introduce in this article the metal–ligand electronic parameter (MLEP), which is based on the local vibrational ML stretching force constant, fully reflecting the intrinsic strength of this bond. We discuss how local vibrational stretching force constants and other local vibrational properties can be derived from the normal vibrational modes, which are generally delocalized because of mode–mode coupling, via a conversion into local vibrational modes, first introduced by Konkoli and Cremer. The MLEP is ideally suited to set up a scale of bond strength orders, which identifies ML bonds with promising catalytic or other activities. The MLEP fully replaces the Tolman electronic parameter (TEP), an indirect measure, which is based on the normal vibrational CO stretching frequencies of [RnM(CO)mL] complexes and which has been used so far in hundreds of investigations. We show that the TEP is at best a qualitative parameter that may fail. Of course, when it was introduced by Tolman in the 1960s, one could not measure the low-frequency ML vibration directly, and our local mode concept did not exist. However, with these two problems solved, a new area of directly characterizing the ML bond has begun, which will open new avenues for enriching organometallic chemistry and beyond.

In memoriam of Dieter Cremer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACS:

Adiabatic connection scheme

BDE:

Bond dissociation energy

BSO:

Bond strength order

CEP:

Computational electronic parameter

DFT:

Density functional theory

LEP:

Lever electronic parameter

LTEP:

Local Tolman electronic parameter

MC:

Metal carbon

MD:

Molecular dynamics

ML:

Metal ligand

MLEP:

Metal–ligand electronic parameter

NHC:

N-heterocyclic carbene

[NiFe]:

Nickel iron hydrogenase

PES:

Potential energy surface

QALE:

Quantitative analysis of ligand effects

TEP:

Tolman electronic parameter

ZPE:

Zero-point energy

References

  1. Seyferth D (2001) Organometallics 20:11488–11498

    Google Scholar 

  2. Crabtree RH (2019) The organometallic chemistry of the transition metals. Wiley, New York

    Google Scholar 

  3. Perez PJ (2019) Advances in organometallic chemistry: volume 71-72. Academic Press, New York

    Google Scholar 

  4. Eschenbroich C (2016) Organometallics. Wiley, New York

    Google Scholar 

  5. Hartwig J (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, New York

    Google Scholar 

  6. Stradiotto M, Lundgren RJ (eds) (2016) Ligand design in metal chemistry – reactivity and catalysis. Wiley, New York

    Google Scholar 

  7. Beller M, Blaser HU (eds) (2012) Topics in organometallic chemistry 42: organometallics as catalysts in the fine chemical industry. Springer, Heidelberg

    Google Scholar 

  8. Maity B, Abe S, Ueno T (2019) Tailoring organometallic complexes into protein scaffolds. In: Advances in bioorganometallic chemistry. Elsevier, Amsterdam, pp 329–346

    Google Scholar 

  9. Brown CJ, Dean Toste F, Bergman RG, Raymond KN (2015) Chem Rev 115(9):3012–3035

    CAS  Google Scholar 

  10. Kam K, Lo W (eds) (2017) Inorganic and organometallic transition metal complexes with biological molecules and living cells. Academic Press, London

    Google Scholar 

  11. Dixneuf PH, Soulé JF (eds) (2019) Organometallics for green catalysis. Springer, New York

    Google Scholar 

  12. Macgregor SA, Eisenstein O (eds) (2016) Structure and bonding 167: computational studies in organometallic chemistry. Springer, Heidelberg

    Google Scholar 

  13. AB NM (2019) Nobel Prize in chemistry. https://www.nobelprize.org

    Google Scholar 

  14. Tan D, Garcia F (2019) Chem Soc Rev 48:2274–2292

    CAS  Google Scholar 

  15. Montero-Campillo M, Mo O, Yanez M, Alkorta I, Elguero J (2019) Adv Inorg Chem 73:73–121

    CAS  Google Scholar 

  16. Buchner MR (2019) Chem Eur J 25:12018–12036

    CAS  Google Scholar 

  17. Edelmann FT (2018) Coord Chem Rev 370:129–223

    CAS  Google Scholar 

  18. Walter O (2019) Chem Eur J 25:2927–2934

    CAS  Google Scholar 

  19. Tomas R, Karel S (2008) Phytochemistry 69:2927–2934

    Google Scholar 

  20. Dornsiepen E, Geringer E, Rinn N, Dehnen S (2019) Coord Chem Rev 380:136–169

    CAS  Google Scholar 

  21. Karimi B, Behzadnia H, Elhamifar D, Akhavan PF, Esfahani FK, Zamani A (2000) Synthesis 9:1399–1427

    Google Scholar 

  22. Schlosser M (ed) (2013) Organometallics in synthesis. Wiley, New York

    Google Scholar 

  23. Hartwig JF (2011) Nat Chem 3(2):99–101

    CAS  Google Scholar 

  24. Hartwig JF (2008) Nature 455:314–322

    CAS  Google Scholar 

  25. Newhouse T, Baran PS (2011) Angew Chem Int Ed 50:3362–3374

    CAS  Google Scholar 

  26. Boyt SM, Jenek NA, Hintermair U (2019) Dalton Trans 48:5107–5124

    CAS  Google Scholar 

  27. Zecchina A, Califano S (2017) The development of catalysis: a history of key processes and personas in catalytic science and technology. Wiley, New York

    Google Scholar 

  28. Paul CJK (ed) (2017) Contemporary catalysis: science, technology, and applications, Gld edn. Royal Society of Chemistry, London

    Google Scholar 

  29. Ruiz JCS (ed) (2017) Applied industrial catalysis. Arcler Press LLC, New York

    Google Scholar 

  30. Copyret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA (2018) Angew Chem Int Ed 57:6398–6440

    Google Scholar 

  31. Samantaray MK, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier JDA, Guidotti M, Psaro R, Basset JM (2018) Chem Soc Rev 47:8403–8437

    CAS  Google Scholar 

  32. González-Sebastián L, Morales-Morales D (2019) J Organomet Chem 893:39–51

    Google Scholar 

  33. Banach L, Gunka P, Zachara J, Buchowicz W (2019) Coord Chem Rev 389:19–58

    CAS  Google Scholar 

  34. Ye Z, Wayland BB (2013) Chapter 5 mechanistic aspects of living radical polymerization mediated by organometallic complexes. The Royal Society of Chemistry, London, pp 168–204

    Google Scholar 

  35. Allan LEN, Perry MR, Shaver MP (2012) Prog Polym Sci 37(1):127–156

    CAS  Google Scholar 

  36. Hurtgen M, Detrembleur C, Jerome C, Debuigne A (2011) Polym Rev 51(2):188–213

    CAS  Google Scholar 

  37. Poli R (2006) Angew Chem Int Ed 45(31):5058–5070

    CAS  Google Scholar 

  38. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32(1):93–146

    CAS  Google Scholar 

  39. Werlé C, Meyer K (2019) Organometallics 38(6):1181–1185

    Google Scholar 

  40. Bellini M, Bevilacqua M, Marchionni A, Miller HA, Filippi J, Grützmacher H, Vizza F (2018) Eur J Inorg Chem 2018(40):4393–4412

    CAS  Google Scholar 

  41. Ciobotaru IC, Polosan S, Ciobotaru CC (2019) Inorg Chim Acta 483:448–453

    Google Scholar 

  42. Wang RS, Chen LC, Yang H, Fu MA, Cheng J, Wu XL, Gao Y, Huang ZB, Chen XJ (2019) Phys Chem Chem Phys 21(47):25976–25981

    CAS  Google Scholar 

  43. Martínez-Calvo M, Mascareñas JL (2018) Coord Chem Rev 359:57–79

    Google Scholar 

  44. García-Álvarez J, Hevia E, Capriati V (2018) Chem Eur J 24:14854–14863

    Google Scholar 

  45. Trammell R, Rajabimoghadam K, Garcia-Bosch I (2019) Chem Rev 119:2954–3031

    CAS  Google Scholar 

  46. Campeau LC, Fogg DE (2019) Organometallics 38(1):1–2

    CAS  Google Scholar 

  47. Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE (2019) Coord Chem Rev 393:79–117

    CAS  Google Scholar 

  48. Parveen S, Arjmand F, Tabassum S (2019) Eur J Med Chem 175:269–286

    CAS  Google Scholar 

  49. Schatzschneider U (2019) Antimicrobial activity of organometal compounds. In: Advances in bioorganometallic chemistry. Elsevier, Amsterdam, pp 173–192. https://doi.org/10.1016/b978-0-12-814197-7.00009-1

    Chapter  Google Scholar 

  50. Desnoyer AN, Love JA (2017) Chem Soc Rev 46:197–238

    CAS  Google Scholar 

  51. Chelucci G (2017) Coord Chem Rev 31:1–36

    Google Scholar 

  52. Li D, Li X, Gong J (2016) Chem Rev 116:11529–11653

    CAS  Google Scholar 

  53. Klein A, Sandleben A, Vogt N (2016) PNAS 86(4, SI):533–549

    CAS  Google Scholar 

  54. Guan W, Zeng G, Kameo H, Nakao Y, Sakaki S (2016) Chem Rec 16(5, SI):2405–2425

    CAS  Google Scholar 

  55. Julia-Hernandez F, Gaydou M, Serrano E, van Gemmeren M, Martin R (2016) Top Curr Chem 374:45–68

    Google Scholar 

  56. Augustine RL (2016) Catal Lett 146(12):2393–2416

    CAS  Google Scholar 

  57. Dean J, Tantillo GE (eds) (2016) Accounts of chemical research: computational catalysis for organic synthesis, vol 46. American Chemical Society, Washington

    Google Scholar 

  58. Bhaduri S, Mukesh D (2014) Homogenous catalysis. Wiley, New York

    Google Scholar 

  59. Durand DJ, Fey N (2019) Chem Rev 119(11):6561–6594

    CAS  Google Scholar 

  60. Ahn S, Hong M, Sundararajan M, Ess D, Baik M (2019) Chem Rev 119:6509–6560

    CAS  Google Scholar 

  61. Coley CW, Green WH, Jensen KF (2018) Acc Chem Res 51:6281–1289

    Google Scholar 

  62. von Lilienfeld OA (2018) Angew Chem Int Ed 57:4164–4169

    Google Scholar 

  63. Luo YR (2007) Comprehensive handbook of chemical bond energies. Taylor and Francis, Boca Raton

    Google Scholar 

  64. Moltved KA, Kepp KP (2018) J Chem Theory Comput 14(7):3479–3492

    CAS  Google Scholar 

  65. Kosar N, Ayub K, Gilani MA, Mahmood T (2019) J Mol Model 25(2):47–60

    Google Scholar 

  66. Morse MD (2018) Acc Chem Res 52(1):119–126

    Google Scholar 

  67. Fang Z, Vasiliu M, Peterson KA, Dixon DA (2017) J Chem Theory Comput 13(3):1057–1066

    CAS  Google Scholar 

  68. Lakuntza O, Besora M, Maseras F (2018) Inorg Chem 57:14660–14670

    CAS  Google Scholar 

  69. Cremer D, Kraka E (2010) Curr Org Chem 14:1524–1560

    CAS  Google Scholar 

  70. Kalescky R, Kraka E, Cremer D (2014) Int J Quantum Chem 114:1060–1072

    CAS  Google Scholar 

  71. Kalescky R, Zou W, Kraka E, Cremer D (2014) J Phys Chem A 118:1948–1963

    CAS  Google Scholar 

  72. Oliveira V, Kraka E, Cremer D (2016) Inorg Chem 56:488–502

    Google Scholar 

  73. Setiawan D, Sethio D, Cremer D, Kraka E (2018) Phys Chem Chem Phys 20:23913–23927

    CAS  Google Scholar 

  74. Sethio D, Oliveira V, Kraka E (2018) Molecules 23:2763

    Google Scholar 

  75. Kraka E, Cremer D (2009) ChemPhysChem 10:686–698

    CAS  Google Scholar 

  76. Cremer D, Larsson JA, Kraka E (1998) New developments in the analysis of vibrational spectra on the use of adiabatic internal vibrational modes. In: Parkanyi C (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, pp 259–327

    Google Scholar 

  77. Konkoli Z, Larsson JA, Cremer D (1998) Int J Quantum Chem 67:11–27

    CAS  Google Scholar 

  78. Konkoli Z, Cremer D (1998) Int J Quantum Chem 67:29–40

    CAS  Google Scholar 

  79. Kaupp M, Danovich D, Shaik S (2017) Coord Chem Rev 344:355–362

    CAS  Google Scholar 

  80. Wu D, Dong C, Zhan H, Du XW (2018) J Phys Chem Lett 9(12):3387–3391

    CAS  Google Scholar 

  81. Lai W, Li C, Chen H, Shaik S (2012) Angew Chem Int Ed 51:5556–5578

    CAS  Google Scholar 

  82. Stasyuk OA, Sedlak R, Guerra CF, Hobza P (2018) J Chem Theory Comput 14(7):3440–3450

    CAS  Google Scholar 

  83. Levine DS, Head-Gordon M (2017) PNAS 114(48):12649–12656

    CAS  Google Scholar 

  84. Andrés J, Ayers PW, Boto RA, Carbó-Dorca R, Chermette H, Cioslowski J, Contreras-García J, Cooper DL, Frenking G, Gatti C, Heidar-Zadeh F, Joubert L, Martín Pendás Á, Matito E, Mayer I, Misquitta AJ, Mo Y, Pilmé J, Popelier PLA, Rahm M, Ramos-Cordoba E, Salvador P, Schwarz WHE, Shahbazian S, Silvi B, Solà M, Szalewicz K, Tognetti V, Weinhold F, Zins ÉL (2019) J Comput Chem 40:2248–2283

    Google Scholar 

  85. Zou W, Kalescky R, Kraka E, Cremer D (2012) J Chem Phys 137:084114

    Google Scholar 

  86. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. The theory of infrared and raman vibrational spectra. McGraw-Hill, New York

    Google Scholar 

  87. Kratzer A (1920) Z Physik 3:289–307

    CAS  Google Scholar 

  88. Kratzer A (1925) Phys Rev 25:240–254

    Google Scholar 

  89. Mecke R (1925) Z Physik 32:823–834

    CAS  Google Scholar 

  90. Morse PM (1929) Phys Rev 34:57–64

    CAS  Google Scholar 

  91. Badger RM (1935) Phys Rev 48:284–285

    CAS  Google Scholar 

  92. Allen HS, Longair AK (1935) Nature 135:764–764

    CAS  Google Scholar 

  93. Badger RM (1935) J Chem Phys 3:710–715

    CAS  Google Scholar 

  94. Huggins ML (1935) J Chem Phys 3:473–479

    CAS  Google Scholar 

  95. Huggins ML (1936) J Chem Phys 4:308–312

    CAS  Google Scholar 

  96. Sutherland GBBM (1938) Proc Indiana Acad Sci 8:341

    Google Scholar 

  97. Sutherland GBBM (1940) J Chem Phys 8:161–165

    CAS  Google Scholar 

  98. Clark CHD, Webb KR (1941) Trans Faraday Soc 37:293–298

    Google Scholar 

  99. Wu CK, Yang C (1944) J Phys Chem 48:295–303

    CAS  Google Scholar 

  100. Linnett JW (1945) Trans Faraday Soc 41:223–232

    CAS  Google Scholar 

  101. Gordy W (1946) J Chem Phys 14:305–321

    CAS  Google Scholar 

  102. Wu CK, Chao SC (1947) Phys Rev 71:118–121

    CAS  Google Scholar 

  103. Guggenheimer KM (1950) Discuss Faraday Soc 9:207–222

    Google Scholar 

  104. Herzberg G (1950) Spectra of diatomic molecules, 2nd edn. D. Van Nostand Co. Inc., Princeton

    Google Scholar 

  105. Siebert H (1953) Z Anorg Allg Chem 273:170–182

    CAS  Google Scholar 

  106. Lippincott ER, Schroeder R (1955) J Chem Phys 23:1131–1142

    CAS  Google Scholar 

  107. Jenkins HO (1955) Trans Faraday Soc 51:1042–1051

    CAS  Google Scholar 

  108. Varshni YP (1958) J Chem Phys 28:1078–1081

    CAS  Google Scholar 

  109. Varshni YP (1958) J Chem Phys 28:1081–1089

    CAS  Google Scholar 

  110. Hershbach DR, Laurie VW (1961) J Chem Phys 35:458–463

    Google Scholar 

  111. Johnston HS (1964) J Am Chem Soc 86:1643–1645

    CAS  Google Scholar 

  112. Ladd JA, Orville-Thomas WJ, Cox BC (1964) Spectrochim Acta 20:1771–1780

    CAS  Google Scholar 

  113. Ladd JA, Orville-Thomas WJ (1966) Spectrochim Acta 22:919–925

    CAS  Google Scholar 

  114. Taylor WJ, Pitzer KS (1947) J Res Natl Bur Stand 38:1

    CAS  Google Scholar 

  115. Decius JC (1953) J Chem Phys 21:1121

    CAS  Google Scholar 

  116. Cyvin SJ, Slater NB (1960) Nature 188:485–485

    CAS  Google Scholar 

  117. Decius J (1963) J Chem Phys 38:241–248

    CAS  Google Scholar 

  118. Cyvin SJ (1971) Theory of compliance matrices. In: Molecular vibrations and mean square amplitudes. Universitetsforlaget, Oslo, pp 68–73

    Google Scholar 

  119. Strohmeier W, Guttenberger J (1964) Chem Ber 97:1871–1876

    CAS  Google Scholar 

  120. Strohmeier W, Müller F (1967) Z Naturforsch 22B:451–452

    Google Scholar 

  121. Fischer R (1960) Chem Ber 93:165–175

    CAS  Google Scholar 

  122. Horrocks Jr WD, Taylor RC (1963) Inorg Chem 2:723–727

    CAS  Google Scholar 

  123. Hecke GRV, Horrocks Jr WD (1966) Inorg Chem 5:1960–1968

    Google Scholar 

  124. Cotton FA, Zingales F (1962) Inorg Chem 1:145–147

    CAS  Google Scholar 

  125. Kraihanzel CS, Cotton FA (1963) Inorg Chem 2:533–540

    CAS  Google Scholar 

  126. Cotton FA (1964) Inorg Chem 3:702–711

    CAS  Google Scholar 

  127. Cotton FA, Musco A, Yagupsky G (1967) Inorg Chem 6:1357–1364

    CAS  Google Scholar 

  128. Tolman CA (1970) J Am Chem Soc 92:2953–2956

    CAS  Google Scholar 

  129. Tolman CA (1972) Chem Soc Rev 1(3):337–353

    CAS  Google Scholar 

  130. Tolman CA (1977) Chem Rev 77(3):313–348

    CAS  Google Scholar 

  131. Cremer D, Kraka E (2017) Dalton Trans 46:8323–8338

    CAS  Google Scholar 

  132. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Van Nostrand Reinholdl, New York

    Google Scholar 

  133. Roodt A, Otto S, Steyl G (2003) Coord Chem Rev 245:121–137

    CAS  Google Scholar 

  134. Kühl O (2005) Coord Chem Rev 249(5-6):693–704

    Google Scholar 

  135. Arduengo III A, Harlow R, Kline M (1991) J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  136. Arduengo III A, Dias R, Harlow R, Kline M (1992) J Am Chem Soc 114:5530–5534

    CAS  Google Scholar 

  137. Anthony JA (1999) Acc Chem Res 32:913–921

    Google Scholar 

  138. Perrin L, Clot E, Eisenstein O, Loch J, Crabtree RH (2001) Inorg Chem 40:5806–5811

    CAS  Google Scholar 

  139. Gusev DG (2009) Organometallics 28(3):763–770

    CAS  Google Scholar 

  140. Gusev DG (2009) Organometallics 28(22):6458–6461

    CAS  Google Scholar 

  141. Tonner R, Frenking G (2009) Organometallics 28(13):3901–3905

    CAS  Google Scholar 

  142. Zobi F (2009) Inorg Chem 48:10845–10855

    CAS  Google Scholar 

  143. Fianchini M, Cundari TR, DeYonker NJ, Dias HVR (2009) Dalton Trans 12(12):2085–2087

    Google Scholar 

  144. Mathew J, Suresh CH (2010) Inorg Chem 49:4665–4669

    CAS  Google Scholar 

  145. Kalescky R, Kraka E, Cremer D (2014) Inorg Chem 53:478–495

    CAS  Google Scholar 

  146. Gillespie A, Pittard K, Cundari T, White D (2002) Internet Electron J Mol Des 1:242–251

    CAS  Google Scholar 

  147. Cooney KD, Cundari TR, Hoffman NW, Pittard KA, Temple MD, Zhao Y (2003) J Am Chem Soc 125(14):4318–4324

    CAS  Google Scholar 

  148. Zeinalipour-Yazdi CD, Cooksy AL, Efstathiou AM (2008) Surf Sci 602(10):1858–1862

    CAS  Google Scholar 

  149. Fey N, Orpen AG, Harvey JN (2009) Coord Chem Rev 253(5-6):704–722

    CAS  Google Scholar 

  150. Fey N (2010) Dalton Trans 39:296–310

    CAS  Google Scholar 

  151. Frenking G, Fröhlich N (2000) Chem Rev 100:717–774

    CAS  Google Scholar 

  152. Thammavongsy Z, Kha IM, Ziller JW, Yang JY (2016) Dalton Trans 45(24):9853–9859

    CAS  Google Scholar 

  153. Mejuto C, Royo B, Guisado-Barrios G, Peris E (2015) Beilstein J Org Chem 11:2584–2590

    CAS  Google Scholar 

  154. Wünsche MA, Mehlmann P, Witteler T, Buß F, Rathmann P, Dielmann F (2015) Angew Chem Int Ed Engl 54(40):11857–11860

    Google Scholar 

  155. Geeson MB, Jupp AR, McGrady JE, Goicoechea JM (2014) ChemComm 50:12281–12284

    CAS  Google Scholar 

  156. Tobisu M, Morioka T, Ohtsuki A, Chatani N (2015) Chem Sci 6:430–437

    Google Scholar 

  157. Marín M, Moreno JJ, Navarro-Gilabert C, Álvarez E, Maya C, Peloso R, Nicasio MC, Carmona E (2018) Chem Eur J 25(1):260–272

    Google Scholar 

  158. Couzijn EPA, Lai YY, Limacher A, Chen P (2017) Organometallics 36:3205–3214

    CAS  Google Scholar 

  159. Yong X, Thurston R, Ho CY (2019) Synthesis 51:2058–2080

    CAS  Google Scholar 

  160. Francos J, Elorriaga D, Crochet P, Cadierno V (2019) Coord Chem Rev 387:199–234

    CAS  Google Scholar 

  161. Xu T, Sha F, Alper H (2016) J Am Chem Soc 138:66629–66635

    Google Scholar 

  162. Kim B, Park N, Lee SM, Kim HJ, Son SU (2015) Polym Chem 6:7363–7367

    CAS  Google Scholar 

  163. Mata JA, Hahn FE, Peris E (2014) Chem Sci 5:1723–1732

    CAS  Google Scholar 

  164. Makedonas C, Mitsopoulou CA (2007) Eur J Inorg Chem 2007(26):4176–4189

    Google Scholar 

  165. Crabtree R (2006) J Organomet Chem 691:3146–3150

    CAS  Google Scholar 

  166. Kégl TR, Pálinkás N, Kollár L, Kégl T (2018) Molecules 23:3176–3187

    Google Scholar 

  167. Zhang X, Yan X, Zhang B, Wang R, Guo S, Peng S (2018) Transit Met Chem 44:39–48

    Google Scholar 

  168. Mehlmann P, Dielmann F (2019) Chem Eur J 25(9):2352–2357

    CAS  Google Scholar 

  169. Romeo R, Alibrandi G (1997) Inorg Chem 36(21):4822–4830

    CAS  Google Scholar 

  170. Denny JA, Darensbourg MY (2016) Coord Chem Rev 324:82–89

    CAS  Google Scholar 

  171. Bungu PN, Otto S (2011) Dalton Trans 40(36):9238–9249

    CAS  Google Scholar 

  172. Ai P, Danopoulos AA, Braunstein P (2016) Dalton Trans 45(11):4771–4779

    CAS  Google Scholar 

  173. Xamonaki N, Asimakopoulos A, Balafas A, Dasenaki M, Choinopoulos I, Coco S, Simandiras E, Koinis S (2016) Inorg Chem 55:4771–4781

    CAS  Google Scholar 

  174. Oliveira KC, Carvalhoa SN, Duartea MF, Gusevskaya EV, dos Santos EN, Karroumi JE, Gouygou M, Urrutigoity M (2015) Appl Catal A Gen 497:10–16

    CAS  Google Scholar 

  175. Marín M, Moreno JJ, Alcaide MM, Álvarez E, López-Serrano J, Campos J, Nicasio MC, Carmona E (2019) J Organomet Chem 896:120–128

    Google Scholar 

  176. Valdes H, Poyatos M, Peris E (2015) Inorg Chem 54(7):3654–3659

    CAS  Google Scholar 

  177. van Weerdenburg BJ, Eshuis N, Tessari M, Rutjes FP, Feiters MC (2015) Dalton Trans 44(35):15387–15390

    Google Scholar 

  178. Tapu D, McCarty Z, Hutchinson L, Ghattas C, Chowdhury M, Salerno J, VanDerveer D (2014) J Organomet Chem 749:134–141

    CAS  Google Scholar 

  179. Maser L, Schneider C, Vondung L, Alig L, Langer R (2019) J Am Chem Soc 141:7596–7604

    CAS  Google Scholar 

  180. Xu X, Zhang Z, Huang S, Cao L, Liu W, Yan X (2019) Dalton Trans 48:6931–6941

    CAS  Google Scholar 

  181. Yasue R, Yoshida K (2019) Organometallics 38(9):2211–2217

    CAS  Google Scholar 

  182. Czerwinska I, Far J, Kune C, Larriba-Andaluz C, Delaude L, De Pauw E (2016) Dalton Trans 45(15):6361–6370

    CAS  Google Scholar 

  183. Weinberger DS, Lavallo V (2015) Ruthenium olefin metathesis catalysts supported by cyclic alkyl aminocarbenes (CAACs). In: Grubbs RH, Wenzel AG, O’Leary DJ, Khosravi E (eds) Handbook of metathesis: catalyst development and mechanism. Wiley-VCH Verlag GmbH, Berlin, pp 87–95

    Google Scholar 

  184. Borguet Y, Zaragoza G, Demonceau A, Delaude L (2015) Dalton Trans 44(21):9744–9755

    CAS  Google Scholar 

  185. Check CT, Jang KP, Schwamb CB, Wong AS, Wang MH, Scheidt KA (2015) Angew Chem Int Ed Engl 54(14):4264–4268

    CAS  Google Scholar 

  186. Gallien AKE, Schaniel D, Woiked T, Klüfers P (2014) Dalton Trans 43:13278–13292

    CAS  Google Scholar 

  187. Varnado Jr CD, Rosen EL, Collins MS, Lynch VM, Bielawski CW (2013) Dalton Trans 42(36):13251–13264

    CAS  Google Scholar 

  188. Yazdani S, Silva BE, Cao TC, Rheingold AL, Grotjahn DB (2019) Polyhedron 161:63–70

    CAS  Google Scholar 

  189. Poë AJ, Moreno C (1999) Organometallics 18(26):5518–5530

    Google Scholar 

  190. Gaydon Q, Cassidy H, Kwon O, Lagueux-Tremblay PL, Bohle DS (2019) J Mol Struct 1192:252–257

    CAS  Google Scholar 

  191. Bhattacharya A, Naskar JP, Saha P, Ganguly R, Saha B, Choudhury ST, Chowdhury S (2016) Inorg Chim Acta 447:168–175

    CAS  Google Scholar 

  192. Schulze B, Schubert US (2014) Chem Soc Rev 43(8):2522–2571

    CAS  Google Scholar 

  193. Mampa RM, Fernandes MA, Carlton L (2014) Organometallics 33:3283–3299

    CAS  Google Scholar 

  194. Strohmeier W, Muller FJ (1967) Chem Ber 100:2812–2821

    CAS  Google Scholar 

  195. Portnyagin IA, Nechaev MS (2009) J Organomet Chem 694(19):3149–3153

    CAS  Google Scholar 

  196. Magee TA, Matthews CN, Wang TS, Wotiz J (1961) J Am Chem Soc 83:3200–3203

    CAS  Google Scholar 

  197. Bond AM, Carr SW, Colton R (1984) Organometallics 3:541–548

    CAS  Google Scholar 

  198. Grim S, Wheatland D, McFarlane W (1967) J Am Chem Soc 89:5573–5577

    CAS  Google Scholar 

  199. Carlton L, Emdin A, Lemmerer A, Fernandes MA (2008) Magn Reson Chem 46(S1):S56–S62

    Google Scholar 

  200. Lang H, Meichel E, Stein T, Weber C, Kralik J, Rheinwald G, Pritzkow H (2002) J Organomet Chem 664(1-2):150–160

    CAS  Google Scholar 

  201. Möhring PC, Vlachakis N, Grimmer NE, Coville NJ (1994) J Organomet Chem 483(1-2):159–166

    Google Scholar 

  202. Metters OJ, Forrest SJK, Sparkes HA, Manners I, Wass DF (2016) J Am Chem Soc 138(6):1994–2003

    CAS  Google Scholar 

  203. Starosta R, Komarnicka UK, Puchalska M (2014) J Lumin 145:430–437

    CAS  Google Scholar 

  204. Andrella NO, Xu N, Gabidullin BM, Ehm C, Baker RT (2019) J Am Chem Soc 141(29):11506–11521

    CAS  Google Scholar 

  205. Ciancaleoni G, Scafuri N, Bistoni G, Macchioni A, Tarantelli F, Zuccaccia D, Belpassi L (2014) Inorg Chem 53(18):9907–9916

    CAS  Google Scholar 

  206. Ciancaleoni G, Biasiolo L, Bistoni G, Macchioni A, Tarantelli F, Zuccaccia D, Belpassi L (2015) Chem Eur J 21(6):2467–2473

    CAS  Google Scholar 

  207. Collado A, Patrick SR, Gasperini D, Meiries S, Nolan SP (2015) Beilstein J Org Chem 11(1):1809–1814

    CAS  Google Scholar 

  208. Rigo M, Habraken ERM, Bhattacharyya K, Weber M, Ehlers AW, Mézailles N, Slootweg JC, Müller C (2019) Chem Eur J 25:1–12

    Google Scholar 

  209. Lever A (1990) Inorg Chem 29:1271–1285

    CAS  Google Scholar 

  210. Lever A (1991) Inorg Chem 30:1980–1985

    CAS  Google Scholar 

  211. Suresh C, Koga N (2002) Inorg Chem 41:1573–1578

    CAS  Google Scholar 

  212. Giering W, Prock A, Fernandez A (2003) Inorg Chem 42:8033–8037

    CAS  Google Scholar 

  213. Alyea E, Song S (1996) Inorg Chem Comm 18:189–221

    CAS  Google Scholar 

  214. Coll DS, Vidal AB, Rodríguez JA, Ocando-Mavárez E, Añez R, Sierraalta A (2015) Inorg Chim Acta 436:163–168

    CAS  Google Scholar 

  215. Shi Q, Thatcher RJ, Slattery J, Sauari PS, Whitwood AC, McGowan PC, Douthwaite RE (2009) Chem Eur J 15:11346–11360

    CAS  Google Scholar 

  216. Valyaev DA, Brousses R, Lugan N, Fernandez I, Sierra MA (2011) Chem Eur J 17:6602–6605

    CAS  Google Scholar 

  217. Uppal BS, Booth RK, Ali N, Lockwood C, Rice CR, Elliott PIP (2011) Dalton Trans 40:7610–7616

    CAS  Google Scholar 

  218. Nelson DJ, Collado A, Manzini S, Meiries S, Slawin AM, Cordes DB, Nolan SP (2014) Organometallics 33(8):2048–2058

    CAS  Google Scholar 

  219. Donald KJ, Tawfik M, Buncher B (2015) J Phys Chem A 119(16):3780–3788

    CAS  Google Scholar 

  220. Verlinden K, Buhl H, Frank W, Ganter C (2015) Eur J Inorg Chem 2015(14):2416–2425

    CAS  Google Scholar 

  221. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T (2015) Chem Rev 115:9307–9387

    CAS  Google Scholar 

  222. Kalescky R, Zou W, Kraka E, Cremer D (2014) Aust J Chem 67:426

    CAS  Google Scholar 

  223. Baker J, Pulay P (2006) J Am Chem Soc 128:11324–11325

    CAS  Google Scholar 

  224. Konkoli Z, Cremer D (1998) Int J Quantum Chem 67:1–9

    CAS  Google Scholar 

  225. Kraka E (2019) Int J Quantum Chem 119:e25849

    Google Scholar 

  226. Zou W, Kalescky R, Kraka E, Cremer D (2012) J Mol Model:1–13

    Google Scholar 

  227. Kalescky R, Zou W, Kraka E, Cremer D (2012) Chem Phys Lett 554:243–247

    CAS  Google Scholar 

  228. Kalescky R, Kraka E, Cremer D (2013) Mol Phys 111:1497–1510

    CAS  Google Scholar 

  229. Zou W, Cremer D (2016) Chem Eur J 22:4087–4097

    CAS  Google Scholar 

  230. McKean DC (1978) Chem Soc Rev 7:399–422

    CAS  Google Scholar 

  231. Hayward RJ, Henry BR (1975) J Mol Spectrosc 57:221–235

    CAS  Google Scholar 

  232. Kjaergaard HG, Yu H, Schattka BJ, Henry BR, Tarr AW (1990) J Chem Phys 93:6239–6248

    CAS  Google Scholar 

  233. Henry BR (1987) Acc Chem Res 20:429–435

    CAS  Google Scholar 

  234. Kjaergaard HG, Turnbull DM, Henry BR (1993) J Chem Phys 99:9438–9452

    CAS  Google Scholar 

  235. Rong Z, Henry BR, Robinson TW, Kjaergaard HG (2005) J Phys Chem A 109:1033–1041

    CAS  Google Scholar 

  236. Jacob CR, Luber S, Reiher M (2009) Chem Eur J 15:13491–13508

    Google Scholar 

  237. Jacob CR, Reiher M (2009) J Chem Phys 130:084106

    Google Scholar 

  238. Liegeois V, Jacob CR, Champagne B, Reiher M (2010) J Phys Chem A 114:7198–7212

    CAS  Google Scholar 

  239. Sokolov VI, Grudzev NB, Farina IA (2003) Phys Solid State 45:1638–1643

    CAS  Google Scholar 

  240. Sangster MJL, Harding JH (1986) J Phys C Solid State Phys 19:6153–6158

    CAS  Google Scholar 

  241. Woodward LA (1972) Introduction to the theory of molecular vibrations and vibrational spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  242. Califano S (1976) Vibrational states. Wiley, London

    Google Scholar 

  243. Zou W, Tao Y, Freindorf M, Cremer D, Kraka E (2020) Chem Phys Lett 478:137337

    Google Scholar 

  244. Zou W, Cremer D (2014) Theor Chem Acc 133:1451

    Google Scholar 

  245. Kraka E, Larsson JA, Cremer D (2010) Generalization of the badger rule based on the use of adiabatic vibrational modes. In: Grunenberg J (ed) Computational spectroscopy. Wiley, New York, pp 105–149

    Google Scholar 

  246. Kalescky R, Kraka E, Cremer D (2013) J Phys Chem A 117:8981–8995

    CAS  Google Scholar 

  247. Kraka E, Setiawan D, Cremer D (2015) J Comput Chem 37:130–142

    Google Scholar 

  248. Sethio D, Daku LML, Hagemann H, Kraka E (2019) ChemPhysChem 20:1967–1977

    CAS  Google Scholar 

  249. Oliveira V, Kraka E, Cremer D (2016) Phys Chem Chem Phys 18:33031–33046

    CAS  Google Scholar 

  250. Oliveira V, Cremer D (2017) Chem Phys Lett 681:56–63

    CAS  Google Scholar 

  251. Yannacone S, Oliveira V, Verma N, Kraka E (2019) Inorganics 7:47

    CAS  Google Scholar 

  252. Oliveira VP, Marcial BL, Machado FBC, Kraka E (2020) Materials 13:55

    CAS  Google Scholar 

  253. Oliveira V, Cremer D, Kraka E (2017) J Phys Chem A 121:6845–6862

    CAS  Google Scholar 

  254. Oliveira V, Kraka E (2017) J Phys Chem A 121:9544–9556

    CAS  Google Scholar 

  255. Setiawan D, Kraka E, Cremer D (2015) J Phys Chem A 119:9541–9556

    CAS  Google Scholar 

  256. Setiawan D, Kraka E, Cremer D (2014) J Phys Chem A 119:1642–1656

    Google Scholar 

  257. Setiawan D, Kraka E, Cremer D (2014) Chem Phys Lett 614:136–142

    CAS  Google Scholar 

  258. Setiawan D, Cremer D (2016) Chem Phys Lett 662:182–187

    CAS  Google Scholar 

  259. Freindorf M, Kraka E, Cremer D (2012) Int J Quantum Chem 112:3174–3187

    CAS  Google Scholar 

  260. Tao Y, Zou W, Jia J, Li W, Cremer D (2017) J Chem Theory Comput 13:55–76

    CAS  Google Scholar 

  261. Tao Y, Zou W, Kraka E (2017) Chem Phys Lett 685:251–258

    CAS  Google Scholar 

  262. Makoś MZ, Freindorf M, Sethio D, Kraka E (2019) Theor Chem Acc 138:76

    Google Scholar 

  263. Lyu S, Beiranvand N, Freindorf M, Kraka E (2019) J Phys Chem A 123:7087–7103

    CAS  Google Scholar 

  264. Zhang X, Dai H, Yan H, Zou W, Cremer D (2016) J Am Chem Soc 138:4334–4337

    CAS  Google Scholar 

  265. Zou W, Zhang X, Dai H, Yan H, Cremer D, Kraka E (2018) J Organomet Chem 856:114–127

    Google Scholar 

  266. Tao Y, Zou W, Sethio D, Verma N, Qiu Y, Tian C, Cremer D, Kraka E (2019) J Chem Theory Comput 15:1761–1776

    CAS  Google Scholar 

  267. Tao Y, Qiu Y, Zou W, Nanayakkara S, Yannacone S, Kraka E (2020) Molecules 25:1589

    CAS  Google Scholar 

  268. Mpemba EB, Osborne DG (1969) Phys Educ 4:17–175

    Google Scholar 

  269. Kraka E, Cremer D (1990) Chemical implication of local features of the electron density distribution. In: Maksic ZB (ed) Theoretical models of chemical bonding. The concept of the chemical bond, vol 2. Springer, Heidelberg, p 453

    Google Scholar 

  270. Kraka E, Cremer D (1992) J Mol Struct Theochem 255:189–206

    Google Scholar 

  271. Setiawan D, Kraka E, Cremer D (2016) J Org Chem 81:9669–9686

    CAS  Google Scholar 

  272. Li Y, Oliveira V, Tang C, Cremer D, Liu C, Ma J (2017) Inorg Chem 56:5793–5803

    CAS  Google Scholar 

  273. Clar E (1972) The aromatic sextet. Wiley, New York

    Google Scholar 

  274. Setiawan D, Kalescky R, Kraka E, Cremer D (2016) Inorg Chem 55:2332–2344

    CAS  Google Scholar 

  275. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  276. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796–6806

    CAS  Google Scholar 

  277. Picque N, Hänsch TW (2019) Nat Photonics 13:146–157

    CAS  Google Scholar 

  278. McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS (2012) Chem Soc Rev 41:2072–2082

    CAS  Google Scholar 

  279. Mantsch HH, Naumann D (2010) J Mol Struct 964:1–4

    CAS  Google Scholar 

  280. Parrott EPJ, Sun Y, Pickwell-MacPherson E (2011) J Mol Struct 1006:66–76

    CAS  Google Scholar 

  281. Smith E, Dent G (2019) Modern Raman spectroscopy: a practical approach. Wiley, New York

    Google Scholar 

  282. Smith DR, Field JJ, Wilson JW, Kane D, Bartels RA (2019) High-sensitivity coherent Raman spectroscopy with Doppler Raman. In: Conference on lasers and electro-optics. Optical Society of America, New York

    Google Scholar 

  283. Meier RJ (2007) Vib Spectrosc 43:26–37

    CAS  Google Scholar 

  284. Parks HL, McGaughey AJH, Viswanathan V (2019) J Phys Chem C 123:4072–4084

    CAS  Google Scholar 

  285. Yang Y, Schneider PE, Culpitt T, Pavosevic F, Hammes-Schiffer S (2019) J Phys Chem Lett 10:1167–1172

    CAS  Google Scholar 

  286. Humason A, Zou W, Cremer D (2014) J Phys Chem A 119:1666–1682

    Google Scholar 

  287. Badger RM (1934) J Chem Phys 2:128–131

    CAS  Google Scholar 

  288. Wiberg K (1968) Tetrahedron 24:1083–1096

    CAS  Google Scholar 

  289. Mayer I (2007) J Comput Chem 28:204–221

    CAS  Google Scholar 

  290. Porterfield WW (1993) Inorganic chemistry, a unified approach. Academic Press, San Diego

    Google Scholar 

  291. Anderson S (2004) Introduction to inorganic chemistry. University Science Books, Sausalito

    Google Scholar 

  292. Runyon JW, Steinhof O, Dias HVR, Calabrese JC, Marshall WJ, Arduengo AJ (2011) Austr J Chem 64:91165–91172

    Google Scholar 

  293. Arduengo AJ, Dolphin JS, Gurau G, Marshall WJ, Nelson JC, Petrov VA, Runyon JW (2013) Angew Chem Int Ed Engl 52:5110–5114

    CAS  Google Scholar 

  294. Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753

    CAS  Google Scholar 

  295. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496

    CAS  Google Scholar 

  296. Dröge T, Glorius F (2010) Angew Chem Int Ed Engl 49:6940–6952

    Google Scholar 

  297. Nelson DJ (2015) Eur J Inorg Chem 2015(12):2012–2027

    CAS  Google Scholar 

  298. Valdes H, Poyatos M, Peris E (2015) Organometallics 34:1725–1729

    CAS  Google Scholar 

  299. Jonek M, Diekmann J, Ganter C (2015) Chem Eur J 21:15759–15768

    CAS  Google Scholar 

  300. Fürstner A, Alcarazo M, Krause H, Lehmann CW (2007) J Am Chem Soc 129:12676–12677

    Google Scholar 

  301. Majhi PK, Serin SC, Schnakenburg G, Gates DP, Streubel R (2014) Eur J Inorg Chem 2014(29):4975–4983

    CAS  Google Scholar 

  302. Soleilhavoup M, Bertrand G (2014) Acc Chem Res 48(2):256–266

    Google Scholar 

  303. Uzelac M, Hernán-Gómez A, Armstrong DR, Kennedy AR, Hevia E (2015) Chem Sci 6(10):5719–5728

    CAS  Google Scholar 

  304. Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  305. Perdew JP (1986) Phys Rev B 33:8822–8824

    CAS  Google Scholar 

  306. Dunning TH (1989) J Chem Phys 90(2):1007–1023

    CAS  Google Scholar 

  307. Körsgen H, Urban W, Brown JM (1999) J Chem Phys 110(8):3861–3869

    Google Scholar 

  308. Carroll PK, McCormack P (1972) Astrophys J 177:L33–L36

    CAS  Google Scholar 

  309. DeYonker NJ, Allen WD (2012) J Chem Phys 137(23):234303

    Google Scholar 

  310. Nakazawa H, Itazaki M (2011) Fe-H complexes in catalysis. In: Plietker B (ed) Iron catalysis: fundamentals and applications. Springer, Berlin, pp 27–81

    Google Scholar 

  311. Aoto YA, de Lima Batista AP, Köhn A, de Oliveira-Filho AGS (2017) J Chem Theory Comput 13(11):5291–5316

    CAS  Google Scholar 

  312. Jones NO, Beltran MR, Khanna SN, Baruah T, Pederson MR (2004) Phys Rev B 70(16):165406

    Google Scholar 

  313. Li HW, Zhu M, Buckley C, Jensen T (2018) Inorganics 6(3):91–96

    Google Scholar 

  314. Becke AD (1993) J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  315. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):299–310

    CAS  Google Scholar 

  316. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):270–283

    CAS  Google Scholar 

  317. Wadt WR, Hay PJ (1985) J Chem Phys 82(1):284–298

    CAS  Google Scholar 

Download references

Acknowledgment

We thank Dani Setiawan for providing us the data for the bending force constants and Daniel Sethio for his valuable comments and suggestions. This work was financially supported by the National Science Foundation, Grants CHE 1464906. We thank SMU for providing computational resources.

Appendix

The appendix contains a compilation of local mode force constants ka(ML) in mdyn/Å (blue color) and corresponding local mode frequencies ωa in cm−1 (red color) for a series of metal/transition metal complexes, which are part of the MLEP library currently under construction. For Cr and some Ti complexes also, the ka(Mπ) and corresponding local mode frequencies ωa(Mπ) are given, which can be calculated by using curvilinear coordinates (Figs. 15 , 16 , and 17).

Fig. 15
figure 15

Extract from the MLEP library, part 1

Fig. 16
figure 16

Extract from the MLEP library, part 2

Fig. 17
figure 17

Extract from the MLEP library, part 3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elfi Kraka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kraka, E., Freindorf, M. (2020). Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_48

Download citation

Publish with us

Policies and ethics