pp 1-36 | Cite as

Complete Active Space Wavefunction-Based Analysis of Magnetization and Electronic Structure

  • Frédéric Gendron
  • Hélène Bolvin
  • Jochen Autschbach
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

A theoretical framework for the generation of natural orbitals, natural spin orbitals, as well as orbital- and spin-magnetizations, from multi-configurational ab initio wavefunction calculations including spin-orbit coupling is presented. Selected case studies show how these computational orbital and magnetization tools can be used to interpret and rationalize the magnetic properties of complexes containing transition metals, lanthanides, and actinides.

Keywords

Electron spin Hamiltonian Magnetization Natural orbitals Spin Hamiltonian Spin orbit coupling Wavefunction calculations Zeeman interaction 

Notes

Acknowledgments

J.A. acknowledges support of his research on EPR and NMR parameters of actinide complexes, and theoretical method developments, by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program, under grant DE-SC0001136.

References

  1. 1.
    Roos BO (2009) Multiconfigurational quantum mechanics (QM) for heavy element compounds. In: Encyclopedia of Inorganic Chemistry. WileyGoogle Scholar
  2. 2.
    Malrieu JP, Caballol R, Calzado CJ, de Graaf C, Guihéry N (2014) Chem Rev 114:429Google Scholar
  3. 3.
    Chan GKL, Sharma S (2011) Annu Rev Phys Chem 62:465Google Scholar
  4. 4.
    Knecht S, Hedegård ED, Keller S, Kovyrshin A, Ma Y, Muolo A, Stein C, Reiher M (2016) Chimia 70:244Google Scholar
  5. 5.
    Knecht S, Keller S, Autschbach J, Reiher M (2016) J Chem Theory Comput 12:5881Google Scholar
  6. 6.
    Chibotaru LF, Ungur L (2012) J Chem Phys 137:064112Google Scholar
  7. 7.
    Autschbach J (2012) J Chem Phys 136:150902Google Scholar
  8. 8.
    Löwdin PO (1955) Phys Rev 97:1475Google Scholar
  9. 9.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157Google Scholar
  10. 10.
    Malmqvist PA, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230Google Scholar
  11. 11.
    Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, Vico LD, Galván IF, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Manni GL, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R (2016) J Comput Chem 37:506Google Scholar
  12. 12.
    Gendron F, Páez-Hernández D, Notter FP, Pritchard B, Bolvin H, Autschbach J (2014) Chem Eur J 20:7994Google Scholar
  13. 13.
    Pritchard B (2014) Calculation of magnetic properties of paramagnetic molecules. PhD thesis, University at Buffalo, State University of New YorkGoogle Scholar
  14. 14.
    Andersson K, Malmqvist PÅ, Roos BO, Sadlev AJ, Wolinski K (1990) J Phys Chem 94:5483Google Scholar
  15. 15.
    Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117(20):9215Google Scholar
  16. 16.
    Bolvin H (2006) ChemPhysChem 7:1575Google Scholar
  17. 17.
    Vancoillie S, Malmqvist PA, Pierloot K (2007) ChemPhysChem 8:1803Google Scholar
  18. 18.
    Vancoillie S, Neese F, Rulisek L, Pierloot K (2009) J Phys Chem A 113:6149Google Scholar
  19. 19.
    Ridier K, Mondal A, Boileau C, Cador O, Gillon B, Chaboussant G, Le Guennic B, Costuas K, Lescouëzec R (2016) Angew Chem Int Ed 55:3963Google Scholar
  20. 20.
    Charron G, Malkin E, Rogez G, Batchelor LJ, Mazerat S, Guillot R, Guihèry N, Barra AL, Mallah T, Bolvin H (2017) Chem Eur J 22:1Google Scholar
  21. 21.
    Notter FP, Bolvin H (2009) J Chem Phys 130(18):184310Google Scholar
  22. 22.
    Gendron F, Pritchard B, Bolvin H, Autschbach J (2015) Dalton Trans 44:19886Google Scholar
  23. 23.
    Autschbach J (2016) Comments Inorg Chem 36:215Google Scholar
  24. 24.
    Myers WK, Duesler EN, Tierney DL (2008) Inorg Chem 47:6701Google Scholar
  25. 25.
    Andres H, Bominaar EL, Smith JM, Eckert NA, Holland PL, Münck E (2002) J Am Chem Soc 124:3012Google Scholar
  26. 26.
    Gendron F, Le Guennic B, Autschbach J (2014) Inorg Chem 53:13174Google Scholar
  27. 27.
    Coutinho JT, Antunes MA, Pereira LCJ, Bolvin H, Marçaloa J, Mazzanti M, Almeida M (2012) Dalton Trans 41:13568Google Scholar
  28. 28.
    Myers WK, Scholes CP, Tierney DL (2009) J Am Chem Soc 131:10421Google Scholar
  29. 29.
    Abragram A, Pryce MHL (1951) Proc R Soc Lond A 206:173Google Scholar
  30. 30.
    Jesson JP (1966) J Chem Phys 45:1049Google Scholar
  31. 31.
    McGarvey BR (1970) J Chem Phys 53:86Google Scholar
  32. 32.
    Neese F (2006) J Am Chem Soc 128:10213Google Scholar
  33. 33.
    McGarvey BR, Telser J (2012) Inorg Chem 51:6000Google Scholar
  34. 34.
    Bolvin H, Autschbach J (2017) In: Liu W (ed) Handbook of relativistic quantum chemistry. Springer, Berlin, pp 725–763Google Scholar
  35. 35.
    Rogez G, Rebilly JN, Barra AL, Sorace L, Blondin G, Kirchner N, Duran M, van Slageren J, Parsons S, Ricard L, Marvilliers A, Mallah T (2005) Angew Chem 44:1876Google Scholar
  36. 36.
    Walter MD, Booth CH, Lukens WW, Andersen RA (2009) Organometallics 28(3):698Google Scholar
  37. 37.
    Rinehart JD, Long JR (2011) Chem Sci 2:2078Google Scholar
  38. 38.
    Meihaus KR, Long JR (2013) J Am Chem Soc 135:17952Google Scholar
  39. 39.
    Chen YC, Liu JL, Wernsdorfer W, Liu D, Chibotaru LF, Chen XM, Tong ML (2017) Angew Chem Int Ed 56:4996Google Scholar
  40. 40.
    Kajwara T (2017) Angew Chem Int Ed 56.  https://doi.org/10.1002/anie.201703022
  41. 41.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Nature 458:439Google Scholar
  42. 42.
    Dognon J, Pyykkö P (2017) Angew Chem Int Ed 56:10132Google Scholar
  43. 43.
    Reveles JU, Clayborne PA, Reber AC, Khanna SN, Pradhan K, Sen P, Pederson MR (2009) Nat Chem 1:310Google Scholar
  44. 44.
    Pyykkö P, Clavaguéra C, Dognon J (2015) In: Dolg M (ed) Computational methods in lanthanide and actinide chemistry. Wiley, ChichesterGoogle Scholar
  45. 45.
    Zhang X, Wang Y, Wang H, Lim A, Gantefoer G, Bowen KH, Reveles JU, Khanna SN (2013) J Am Chem Soc 135:4856Google Scholar
  46. 46.
    Hutchison CAJ, Weinstock B (1960) J Chem Phys 32:56Google Scholar
  47. 47.
    Hutchison CAJ, Tsang T, Weinstock B (1962) J Chem Phys 37:555Google Scholar
  48. 48.
    Siladke NA, Meihaus KR, Ziller JW, Fang M, Furche F, Long JR, Evans WJ (2012) J Am Chem Soc 134:1243Google Scholar
  49. 49.
    Kahn O (1993) Molecular magnetism. VCH, New YorkGoogle Scholar
  50. 50.
    Kindra DR, Evans WJ (2014) Chem Rev 114:8865Google Scholar
  51. 51.
    Marks T, Seyam AM (1972) J Am Chem Soc 94(18):6545Google Scholar
  52. 52.
    Gendron F, Autschbach J (2016) J Chem Theory Comput 12:5309Google Scholar
  53. 53.
    Van den Heuvel W, Soncini A (2013) J Chem Phys 138:054113Google Scholar
  54. 54.
    Soncini A, Van den Heuvel W (2013) J Chem Phys 138(2):021103Google Scholar
  55. 55.
    Autschbach J (2015) In: Dixon DA (ed) Annual reports in computational chemistry, vol 11. Elsevier, Amsterdam, pp 3–36Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Frédéric Gendron
    • 1
  • Hélène Bolvin
    • 2
  • Jochen Autschbach
    • 1
  1. 1.Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloUSA
  2. 2.Laboratoire de Physique et de Chimie QuantiquesUniversité Toulouse 3ToulouseFrance

Personalised recommendations