Advertisement

pp 1-74 | Cite as

Role of Ab Initio Calculations in the Design and Development of Lanthanide Based Single Molecule Magnets

  • Tulika Gupta
  • Mukesh Kumar Singh
  • Gopalan Rajaraman
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

In this book chapter, we have reviewed recent trends in employing ab initio calculations based on complete active space self-consistent field (CASSCF)/restricted active space spin interaction with spin–orbit coupling (RASSI-SO) procedure to interpret, rationalize and predict suitable lanthanide based molecular magnets. We begin with the general introduction on the methods used followed by various pragmatic instances where ab initio calculations have been employed to understand the magnetic anisotropy in lanthanide based single-ion magnets (SIMs). While a detailed section is dedicated to the mononuclear DyIII SIMs, we have also covered other lanthanide SIMs briefly. Particularly, we have classified various SIMs based on the observed crystal-field splitting between ground and first excited states and this likely to shed light on the most important issue of suitable geometries that could yield high blocking temperature SIMs.

Keywords

Ab initio calculations CASSCF/RASSI-SO approach DyIII SIMs Lanthanides Mechanism of relaxation Single-ion magnet (SIM) 

Notes

Acknowledgments

G.R. thanks the SERB (EMR/2014/00024) and INSA for funding. MKS thanks UGC-India for fellowship. TG thanks UGC for a fellowship.

References

  1. 1.
    Miller JS, Epstein AJ (2000) MRS Bull 25:21–30Google Scholar
  2. 2.
    Yamashita M, Katoh K (2017) Molecular magnetic materials. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 79–101Google Scholar
  3. 3.
    Aldoshin SM, Korchagin DV, Palii AV, Tsukerblat BS (2017) Pure Appl Chem 89:1119Google Scholar
  4. 4.
    Cornia A, Costantino AF, Zobbi L, Caneschi A, Gatteschi D, Mannini M, Sessoli R (2006) In: Winpenny R (ed) Single-molecule magnets and related phenomena. Springer, Berlin, Heidelberg, pp 133–161Google Scholar
  5. 5.
    Coulon C, Miyasaka H, Clerac R (2006) Single-molecule magnets and related phenomena, vol 122. Springer, Berlin, Heidelberg, pp 163–206Google Scholar
  6. 6.
    Gatteschi RSD, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Pedersen KS, Vindigni A, Sessoli R, Coulon C, Clérac R (2017) Molecular magnetic materials. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 131–159Google Scholar
  8. 8.
    Gao S (2015) Molecular nanomagnets and related phenomena. Springer, Berlin, HeidelbergGoogle Scholar
  9. 9.
    Benelli C, Gatteschi D (2015) Introduction to molecular magnetism. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp I–VIIGoogle Scholar
  10. 10.
    Kahn O (1993) Molecular magnetism. VCH Publishers, OrsayGoogle Scholar
  11. 11.
    Ruiz E, Alvarez S, Rodriguez-Fort A, Alemany P, Pouillon Y, Massobrio A (2001) In: Miller JS, Drillon M (eds) Magnetism: molecules to material, vol 2. Wiley-VCH, Weinheim, p 227Google Scholar
  12. 12.
    Clemente-Juan JM, Coronado E, Gaita-Ariño A (2015) Lanthanides and actinides in molecular magnetism. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 27–60Google Scholar
  13. 13.
    Ungur L, Le Roy JJ, Korobkov I, Murugesu M, Chibotaru LF (2014) Angew Chem Int Ed Engl 53:4413–4417Google Scholar
  14. 14.
    Luzon J, Sessoli R (2012) Dalton Trans 41:13556–13567Google Scholar
  15. 15.
    Sessoli R, Powell AK (2009) Coord Chem Rev 253:2328–2341Google Scholar
  16. 16.
    Jiang S-D, Wang B-W, Gao S (2014) In: Gao S. (ed) Molecular nanomagnets and related phenomena, Springer, Berlin, pp 1–31Google Scholar
  17. 17.
    Tang J, Zhang P (2015) Lanthanide single molecule magnets. Springer, BerlinGoogle Scholar
  18. 18.
    Liu J, Chen Y-C, Jia J-H, Liu J-L, Vieru V, Ungur L, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen X-M, Tong M-L (2016) J Am Chem Soc 138:5441–5450Google Scholar
  19. 19.
    Chen Y-C, Liu J-L, Ungur L, Liu J, Li Q-W, Wang L-F, Ni Z-P, Chibotaru LF, Chen X-M, Tong M-L (2016) J Am Chem Soc 138:2829–2837Google Scholar
  20. 20.
    Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R (2016) Chem Sci 7:5181–5191Google Scholar
  21. 21.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Nature 548:439–442Google Scholar
  22. 22.
    Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) Angew Chem Int Ed 56:11445–11449Google Scholar
  23. 23.
    Meng Y-S, Jiang S-D, Wang B-W, Gao S (2016) Acc Chem Res 49:2381–2389Google Scholar
  24. 24.
    Liddle ST, van Slageren J (2015) Chem Soc Rev 44:6655–6669Google Scholar
  25. 25.
    Dreiser J (2015) J Phys Condens Matter 27:183203Google Scholar
  26. 26.
    Ungur L, Chibotaru LF (2017) Chem Eur J 23:3708–3718Google Scholar
  27. 27.
    Chibotaru L (2015) Theoretical understanding of anisotropy in molecular nanomagnets. In: Gao S (ed) Molecular nanomagnets and related phenomena, vol 164. Springer, Berlin, Heidelberg, pp 185–229Google Scholar
  28. 28.
    Ungur L, Chibotaru LF (2015) Lanthanides and actinides in molecular magnetism. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 153–184Google Scholar
  29. 29.
    Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R (2016) J Comp Chem 37:506–541Google Scholar
  30. 30.
    Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist PA, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comp Chem 31:224–247Google Scholar
  31. 31.
    Duncan JA (2009) J Am Chem Soc 131:2416–2416Google Scholar
  32. 32.
    Swerts B, Chibotaru LF, Lindh R, Seijo L, Barandiaran Z, Clima S, Pierloot K, Hendrickx MFA (2008) J Chem Theory Comput 4:586–594Google Scholar
  33. 33.
    Veryazov V, Widmark PO, Serrano-Andres L, Lindh R, Roos BO (2004) Int J Quantum Chem 100:626–635Google Scholar
  34. 34.
    Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222–239Google Scholar
  35. 35.
    Malmqvist PA, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230–240Google Scholar
  36. 36.
    Chibotaru LF, Ungur L (2012) J Chem Phys 137:064112–064122Google Scholar
  37. 37.
    Chibotaru LF, Ungur L (2006) MOLCAS SINGLE_ANISO routines. University of Leuven, BelgiumGoogle Scholar
  38. 38.
    Douglas M, Kroll NM (1974) Ann Phys 82:89–155Google Scholar
  39. 39.
    Hess BA (1985) Phys Rev A 32:756–763Google Scholar
  40. 40.
    Heß BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371Google Scholar
  41. 41.
  42. 42.
    Chilton NF, Collison D, McInnes EJL, Winpenny REP, Soncini A (2013) Nat Commun 4:2551Google Scholar
  43. 43.
    Rinehart JD, Long JR (2011) Chem Sci 2:2078–2085Google Scholar
  44. 44.
    Sievers J (1982) Z Phys B: Condens Matter Quanta 45:289–296Google Scholar
  45. 45.
    Baldoví JJ, Clemente-Juan JM, Coronado E, Gaita-Ariño A (2014) Inorg Chem 53:11323–11327Google Scholar
  46. 46.
    Oyarzabal I, Ruiz J, Seco JM, Evangelisti M, Camón A, Ruiz E, Aravena D, Colacio E (2014) Chem Eur J 20:14262–14269Google Scholar
  47. 47.
    Aravena D, Ruiz E (2013) Inorg Chem 52:13770–13778Google Scholar
  48. 48.
    Baldovi JJ, Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Gaita-Arino A (2012) Dalton Trans 41:13705–13710Google Scholar
  49. 49.
    Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Palii A (2012) Inorg Chem 51:12565–12574Google Scholar
  50. 50.
    Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Palii A (2013) J Comput Chem 34:1961–1967Google Scholar
  51. 51.
    Pointillart F, Jung J, Berraud-Pache R, Le Guennic B, Dorcet V, Golhen S, Cador O, Maury O, Guyot Y, Decurtins S, Liu S-X, Ouahab L (2015) Inorg Chem 54:5384–5397Google Scholar
  52. 52.
    Lines ME (1971) J Chem Phys 55:2977–2984Google Scholar
  53. 53.
    Ungur L, Chibotaru LF (2007) POLY_ANISO program. KU Leuven, BelgiumGoogle Scholar
  54. 54.
    Marx R, Moro F, Dorfel M, Ungur L, Waters M, Jiang SD, Orlita M, Taylor J, Frey W, Chibotaru LF, van Slageren J (2014) Chem Sci 5:3287–3293Google Scholar
  55. 55.
    Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) Sci Rep 4:5471Google Scholar
  56. 56.
    Batchelor LJ, Cimatti I, Guillot R, Tuna F, Wernsdorfer W, Ungur L, Chibotaru LF, Campbell VE, Mallah T (2014) Dalton Trans 43:12146–12149Google Scholar
  57. 57.
    Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D (2009) J Am Chem Soc 131:5573–5579Google Scholar
  58. 58.
    Gupta T, Rajaraman G (2016) Chem Commun 52:8972–9008Google Scholar
  59. 59.
    Zhang P, Zhang L, Tang J (2015) Dalton Trans 44:3923–3929Google Scholar
  60. 60.
    Ungur L, Chibotaru LF (2016) Inorg Chem 55:10043–10056Google Scholar
  61. 61.
    Orbach R (1961) Proc R Soc Lond A 264:485–495Google Scholar
  62. 62.
    Campbell VE, Bolvin H, Rivière E, Guillot R, Wernsdorfer W, Mallah T (2014) Inorg Chem 53:2598–2605Google Scholar
  63. 63.
    Li DP, Wang TW, Li CH, Liu DS, Li YZ, You XZ (2010) Chem Commun 46:2929–2931Google Scholar
  64. 64.
    Gavey EL, Al Hareri M, Regier J, Carlos LD, Ferreira RAS, Razavi FS, Rawson JM, Pilkington M (2015) J Mater Chem C 3:7738–7747Google Scholar
  65. 65.
    Ruiz J, Mota AJ, Rodriguez-Dieguez A, Titos S, Herrera JM, Ruiz E, Cremades E, Costes JP, Colacio E (2012) Chem Commun 48:7916–7918Google Scholar
  66. 66.
    Chilton NF, Langley SK, Moubaraki B, Soncini A, Batten SR, Murray KS (2013) Chem Sci 4:1719–1730Google Scholar
  67. 67.
    Cucinotta G, Perfetti M, Luzon J, Etienne M, Car PE, Caneschi A, Calvez G, Bernot K, Sessoli R (2012) Angew Chem Int Ed Engl 51:1606–1610Google Scholar
  68. 68.
    Feltham HLC, Lan Y, Klöwer F, Ungur L, Chibotaru LF, Powell AK, Brooker S (2011) Chem Eur J 17:4362–4365Google Scholar
  69. 69.
    Long J, Rouquette J, Thibaud J-M, Ferreira RAS, Carlos LD, Donnadieu B, Vieru V, Chibotaru LF, Konczewicz L, Haines J, Guari Y, Larionova J (2015) Angew Chem Int Ed 54:2236–2240Google Scholar
  70. 70.
    Xue S, Ungur L, Guo Y-N, Tang J, Chibotaru LF (2014) Inorg Chem 53:12658–12663Google Scholar
  71. 71.
    Upadhyay A, Singh SK, Das C, Mondol R, Langley SK, Murray KS, Rajaraman G, Shanmugam M (2014) Chem Commun 50:8838–8841Google Scholar
  72. 72.
    Bhunia A, Gamer MT, Ungur L, Chibotaru LF, Powell AK, Lan Y, Roesky PW, Menges F, Riehn C, Niedner-Schatteburg G (2012) Inorg Chem 51:9589–9597Google Scholar
  73. 73.
    Ou-Yang JK, Saleh N, Fernandez Garcia G, Norel L, Pointillart F, Guizouarn T, Cador O, Totti F, Ouahab L, Crassous J, Le Guennic B (2016) Chem Commun 52:14474–14477Google Scholar
  74. 74.
    Vignesh KR, Langley SK, Murray KS, Rajaraman G (2017) Inorg Chem 56:2518Google Scholar
  75. 75.
    Jung J, da Cunha TT, Le Guennic B, Pointillart F, Pereira CLM, Luzon J, Golhen S, Cador O, Maury O, Ouahab L (2014) Eur J Inorg Chem 2014:3888–3894Google Scholar
  76. 76.
    Costes JP, Titos-Padilla S, Oyarzabal I, Gupta T, Duhayon C, Rajaraman G, Colacio E (2015) Chem Eur J 21:15785–15796Google Scholar
  77. 77.
    Gregson M, Chilton NF, Ariciu A-M, Tuna F, Crowe IF, Lewis W, Blake AJ, Collison D, McInnes EJL, Winpenny REP, Liddle ST (2016) Chem Sci 7:155–165Google Scholar
  78. 78.
    Sun W-B, Yan P-F, Jiang S-D, Wang B-W, Zhang Y-Q, Li H-F, Chen P, Wang Z-M, Gao S (2016) Chem Sci 7:684–691Google Scholar
  79. 79.
    Long J, Shestakov BG, Liu D, Chibotaru LF, Guari Y, Cherkasov AV, Fukin GK, Trifonov AA, Larionova J (2017) Chem Commun 53:4706–4709Google Scholar
  80. 80.
    Rajaraman G, Singh SK, Gupta T, Shanmugam M (2014) Chem Commun 50:15513–15516Google Scholar
  81. 81.
    Gupta T, Velmurugan G, Rajeshkumar T, Rajaraman G (2016) J Chem Sci 128:1615–1630Google Scholar
  82. 82.
    Kishi Y, Pointillart F, Lefeuvre B, Riobe F, Le Guennic B, Golhen S, Cador O, Maury O, Fujiwara H, Ouahab L (2017) Chem Commun 53:3575–3578Google Scholar
  83. 83.
    Lucaccini E, Briganti M, Perfetti M, Vendier L, Costes J-P, Totti F, Sessoli R, Sorace L (2016) Chem Eur J 22:5552–5562Google Scholar
  84. 84.
    Costes JP, Titos-Padilla S, Oyarzabal I, Gupta T, Duhayon C, Rajaraman G, Colacio E (2016) Inorg Chem 55:4428–4440Google Scholar
  85. 85.
    Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, Chibotaru LF, Tong M-L (2013) Chem Sci 4:3310–3316Google Scholar
  86. 86.
    Ding Y-S, Chilton NF, Winpenny REP, Zheng Y-Z (2016) Angew Chem Int Ed 55:16071–16074Google Scholar
  87. 87.
    Chen Y-C, Liu J-L, Lan Y, Zhong Z-Q, Mansikkamäki A, Ungur L, Li Q-W, Jia J-H, Chibotaru LF, Han J-B, Wernsdorfer W, Chen X-M, Tong M-L (2017) Chem Eur J 23:5708–5715Google Scholar
  88. 88.
    Lucaccini E, Sorace L, Perfetti M, Costes J-P, Sessoli R (2014) Chem Commun 50:1648–1651Google Scholar
  89. 89.
    Le Roy JJ, Jeletic M, Gorelsky SI, Korobkov I, Ungur L, Chibotaru LF, Murugesu M (2013) J Am Chem Soc 135:3502–3510Google Scholar
  90. 90.
    Chilton NF, Goodwin CAP, Mills DP, Winpenny REP (2015) Chem Commun 51:101–103Google Scholar
  91. 91.
    Chilton NF (2015) Inorg Chem 54:2097–2099Google Scholar
  92. 92.
    Singh MK, Yadav N, Rajaraman G (2015) Chem Commun 51:17732–17735Google Scholar
  93. 93.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) Nat Chem 3:538–542Google Scholar
  94. 94.
    Rajeshkumar T, Rajaraman G (2012) Chem Commun 48:7856–7858Google Scholar
  95. 95.
    Hu Z, Dong B-W, Liu Z, Liu J-J, Su J, Yu C, Xiong J, Shi D-E, Wang Y, Wang B-W, Ardavan A, Shi Z, Jiang S-D, Gao S (2017) J Am Chem SocGoogle Scholar
  96. 96.
    Liu F, Krylov DS, Spree L, Avdoshenko SM, Samoylova NA, Rosenkranz M, Kostanyan A, Greber T, Wolter AUB, Büchner B, Popov AA (2017) Nat Commun 8:16098Google Scholar
  97. 97.
    Singh MK, Rajaraman G (2016) Chem Commun 52:14047–14050Google Scholar
  98. 98.
    Vieru V, Ungur L, Chibotaru LF (2013) J Phys Chem Lett 4:3565–3569Google Scholar
  99. 99.
    Chen C-H, Krylov DS, Avdoshenko S, Liu F, Spree L, Yadav R, Alvertis A, Hozoi L, Nenkov K, Kostanyan A, Greber T, Wolter AUB, Popov AA (2017) Chem Sci 8:6451–6465Google Scholar
  100. 100.
    Boulon ME, Cucinotta G, Liu SS, Jiang SD, Ungur L, Chibotaru LF, Gao S, Sessoli R (2013) Chem Eur J 19:13726–13731Google Scholar
  101. 101.
    Flanagan BM, Bernhardt PV, Krausz ER, Lüthi SR, Riley MJ (2001) Inorg Chem 40:5401–5407Google Scholar
  102. 102.
    Singh SK, Pandey B, Velmurugan G, Rajaraman G (2017) Dalton Trans 46:11913–11924Google Scholar
  103. 103.
    Das C, Upadhyay A, Vaidya S, Singh SK, Rajaraman G, Shanmugam M (2015) Chem Commun 51:6137–6140Google Scholar
  104. 104.
    Pedersen KS, Ungur L, Sigrist M, Sundt A, Schau-Magnussen M, Vieru V, Mutka H, Rols S, Weihe H, Waldmann O, Chibotaru LF, Bendix J, Dreiser J (2014) Chem Sci 5:1650–1660Google Scholar
  105. 105.
    Boulon ME, Cucinotta G, Luzon J, Degl’Innocenti C, Perfetti M, Bernot K, Calvez G, Caneschi A, Sessoli R (2013) Angew Chem Int Ed 52:350–354Google Scholar
  106. 106.
    Liu J-L, Yuan K, Leng J-D, Ungur L, Wernsdorfer W, Guo F-S, Chibotaru LF, Tong M-L (2012) Inorg Chem 51:8538–8544Google Scholar
  107. 107.
    Blackburn OA, Chilton NF, Keller K, Tait CE, Myers WK, McInnes EJL, Kenwright AM, Beer PD, Timmel CR, Faulkner S (2015) Angew Chem 127:10933–10936Google Scholar
  108. 108.
    Singh SK, Gupta T, Ungur L, Rajaraman G (2015) Chem Eur J 21:13812–13819Google Scholar
  109. 109.
    Li Q-W, Wan R-C, Chen Y-C, Liu J-L, Wang L-F, Jia J-H, Chilton NF, Tong M-L (2016) Chem Commun 52:13365–13368Google Scholar
  110. 110.
    Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R (2016) Chem Commun 52:7168–7171Google Scholar
  111. 111.
    Chen Y-C, Liu J-L, Wernsdorfer W, Liu D, Chibotaru LF, Chen X-M, Tong M-L (2017) Angew Chem Int Ed 56:4996–5000Google Scholar
  112. 112.
    Meng Y-S, Qiao Y-S, Zhang Y-Q, Jiang S-D, Meng Z-S, Wang B-W, Wang Z-M, Gao S (2016) Chem Eur J 22:4704–4708Google Scholar
  113. 113.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y (2003) J Am Chem Soc 125:8694Google Scholar
  114. 114.
    Ganivet CR, Ballesteros B, de la Torre G, Clemente-Juan JM, Coronado E, Torres T (2013) Chem Eur J 19:1457–1465Google Scholar
  115. 115.
    Mannini M, Bertani F, Tudisco C, Malavolti L, Poggini L, Misztal K, Menozzi D, Motta A, Otero E, Ohresser P, Sainctavit P, Condorelli GG, Dalcanale E, Sessoli R (2014) Nat Commun 5:4582Google Scholar
  116. 116.
    Chen Y, Ma F, Chen X, Dong B, Wang K, Jiang S, Wang C, Chen X, Qi D, Sun H, Wang B, Gao S, Jiang J (2017) Inorg Chem Front 4:1465Google Scholar
  117. 117.
    Chen Y, Ma F, Chen X, Dong B, Wang K, Jiang S, Wang C, Chen X, Qi D, Sun H, Wang B, Gao S, Jiang J (2017) Inorg Chem 56:13889–13896Google Scholar
  118. 118.
    Singh SK, Gupta T, Rajaraman G (2014) Inorg Chem 53:10835–10845Google Scholar
  119. 119.
    Pointillart F, Cador O, Le Guennic B, Ouahab L (2017) Coord Chem Rev.  https://doi.org/10.1016/j.ccr.2016.1012.1017
  120. 120.
    Gupta T, Rajaraman G (2014) J Chem Sci 126:1569–1579Google Scholar
  121. 121.
    Lunghi A, Totti F, Sessoli R, Sanvito S (2017) Nat Commun 8:14620Google Scholar
  122. 122.
    Vignesh KR, Soncini A, Langley SK, Wernsdorfer W, Murray KS, Rajaraman G (2017) Nat Commun 8:1023.  https://doi.org/10.1038/s41467-017-01102-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tulika Gupta
    • 1
  • Mukesh Kumar Singh
    • 1
  • Gopalan Rajaraman
    • 1
  1. 1.Department of ChemistryIIT BombayMumbaiIndia

Personalised recommendations