Skip to main content

Mannich Base Ligands as Versatile Platforms for SMMs

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 64))

Abstract

Aminophenol Mannich base derivatives are versatile and flexible ligands for preparing a wide variety of homo- and heterometallic discrete coordination compounds, ranging from mononuclear to hexanuclear, which exhibit aesthetically pleasant structures with intricate topologies. These ligands are particularly adapted to obtain 3d/4f systems, where invariably the amino fragment is coordinated to the transition metal ion and the phenolate oxygen atoms bridge transition metal and lanthanide ions. Their coordination spheres are completed by donor atoms belonging either to methoxy and aldehyde groups of the Mannich base ligands or to terminal and bridging ancillary ligands. Moreover, robust 3d-4f dinuclear units can be assembled with either bridging ligands or complexes acting as bridging ligands to afford heterometallic complexes with increased nuclearity. The complexes containing one or two paramagnetic ions often exhibit appealing magnetic properties, alone or combined with other physical properties, that essentially arise from large local magnetic anisotropy and magnetic exchange coupling of the metal ions. This chapter provides an overview of recent results on single-molecule magnets (SMMs) based on aminophenol Mannich base ligands that illustrate the scope, state of the art and fruitful dynamism of this field of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford

    Google Scholar 

  2. Bartolomé J, Luis F, Fernández JF (2014) Molecular magnets: physics and applications. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  3. Gao S (2015) Molecular nanomagnets and related phenomena. Structure and bonding, vol 164. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  4. Cornia A, Mannini M (2015) Single-molecule magnets on surfaces. Structure and bonding, vol 164. Springer-Verlag, Berlin, Heidelberg, pp 293–330

    Google Scholar 

  5. Moreno Pineda E, Komeda T, Katoh K, Yamashita M, Ruben M (2016) Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties. Dalton Trans 45:18417–18433

    CAS  PubMed  Google Scholar 

  6. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186

    CAS  PubMed  Google Scholar 

  7. Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew AJ, Gillin WP, Dediu VA (2013) A single-device universal logic gate based on a magnetically enhanced memristor. Adv Mater 25:534–538

    CAS  PubMed  Google Scholar 

  8. Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488:357–360

    CAS  PubMed  Google Scholar 

  9. Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat Nanotechnol 8:165–169

    CAS  PubMed  Google Scholar 

  10. Jenkins M, Hümmer T, Martínez-Pérez MJ, García-Ripoll J, Zueco D, Luis F (2013) Coupling single-molecule magnets to quantum circuits. New J Phys 15:095007

    Google Scholar 

  11. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421

    CAS  PubMed  Google Scholar 

  12. Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W (2014) Electrically driven nuclear spin resonance in single-molecule magnets. Science 344:1135–1138

    CAS  PubMed  Google Scholar 

  13. Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336–3355

    CAS  PubMed  Google Scholar 

  14. Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Molecular spintronics based on single-molecule magnets composed of multiple-decker phthalocyaninato terbium(III) complex. Chem Asian J 7:1154–1169

    CAS  PubMed  Google Scholar 

  15. Jiang SD, Goß K, Cervetti C, Bogani L (2012) An introduction to molecular spintronics. Sci China Chem 55:867–882

    CAS  Google Scholar 

  16. Lumetti S, Candini A, Godfrin C, Balestro F, Wernsdorfer W, Klyatskaya S, Ruben M, Affronte M (2016) Single-molecule devices with graphene electrodes. Dalton Trans 45:16570–16574

    CAS  PubMed  Google Scholar 

  17. Cornia A, Seneor P (2017) Spintronics: the molecular way. Nat Mater 16:505–506

    CAS  PubMed  Google Scholar 

  18. Rocha AR, García-Suárez VM, Bailey SW, Lambert CJ, Ferrerand J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4:335–339

    CAS  PubMed  Google Scholar 

  19. Affronte M (2009) Molecular nanomagnets for information technologies. J Mater Chem 19:1731–1737

    CAS  Google Scholar 

  20. Sessoli R, Boulon ME, Caneschi A, Mannini M, Poggini L, Wilhelm F, Rogalev A (2015) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    CAS  PubMed  Google Scholar 

  22. Ardavan A, Rival O, Morton JJL, Blundell SJ, Tyryshkin AM, Timco GA, Winpenny RPA (2007) Will spin-relaxation times in molecular magnets permit quantum information processing? Phys Rev Lett 98:057201

    PubMed  Google Scholar 

  23. Stamp PCE, Gaita-Ariño A (2009) Spin-based quantum computers made by chemistry: hows and whys. J Mater Chem 19:1718–1730

    CAS  Google Scholar 

  24. Martínez-Pérez MJ, Cardona-Serra S, Schlegel C, Moro F, Alonso PJ, Prima-García H, Clemente-Juan JM, Evangelisti M, Gaita-Ariño A, Sesé J, Van Slageren J, Coronado E, Luis F (2012) Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. Phys Rev Lett 108:247213

    PubMed  Google Scholar 

  25. Aromí G, Brechin GEK (2006) Synthesis of 3d metallic single-molecule magnets. Structure and bonding, vol 122, pp 1–67

    Google Scholar 

  26. Bagai R, Christou G (2009) The Drosophila of single-molecule magnetism. Chem Soc Rev 38:1011

    CAS  PubMed  Google Scholar 

  27. Brechin EK (ed) (2010) “Molecular Magnets”, themed issue. Dalton Trans

    Google Scholar 

  28. Murrie M (2010) Cobalt (II) single-molecule magnets. Chem Soc Rev 39:1986–1995

    CAS  PubMed  Google Scholar 

  29. Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238

    CAS  PubMed  Google Scholar 

  30. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037

    CAS  PubMed  Google Scholar 

  31. Milios CJ, Vinslava A, Wernsdorfer W, Moggach S, Parsons S, Perlepes SP, Christou G, Brechin EK (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129:2754–2755

    CAS  PubMed  Google Scholar 

  32. Inglis R, Taylor SM, Jones LF, Papaefstathiou GS, Perlepes SP, Datta S, Hill S, Wernsdorfer W, Brechin EK (2009) Dalton Trans:9157–9168

    Google Scholar 

  33. Yoshihara D, Karasawa S, Koga N (2008) Cyclic single-molecule magnet in heterospin system. J Am Chem Soc 130:10460–10461

    CAS  PubMed  Google Scholar 

  34. Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G (2004) Giant single-molecule magnets: a {Mn84} torus and its supramolecular nanotubes. Angew Chem Int Ed 43:2117–2121

    CAS  Google Scholar 

  35. Ako AM, Hewitt IJ, Mereacre V, Clerac R, Wernsdorfer W, Anson CE, Powell AK (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 45:4926–4929

    CAS  Google Scholar 

  36. Frost JM, Harriman KLM, Murugesu M (2016) The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? Chem Sci 7:2470–2491

    CAS  PubMed  Google Scholar 

  37. Bar AK, Pichon C, Sutter J-P (2016) Magnetic anisotropy in two- to eight-coordinated transition−metal complexes: recent developments in molecular magnetism. Coord Chem Rev 308:346–380

    CAS  Google Scholar 

  38. Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44:2135–2147

    CAS  PubMed  Google Scholar 

  39. Gómez-Coca S, Aravena D, Morales R, Ruiz E (2015) Large magnetic anisotropy in mononuclear metal complexes. Coord Chem Rev 289–290:379–392

    Google Scholar 

  40. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F, Long JR (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5:577–581

    CAS  PubMed  Google Scholar 

  41. Layfield RA, Murugesu M (eds) (2015) Lanthanides and actinides in molecular magnetism. Wiley-VCH, Weinheim

    Google Scholar 

  42. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085

    CAS  Google Scholar 

  43. Guo YN, Xu GF, Guo Y, Tang J (2011) Dalton Trans 40:9953–9963

    CAS  PubMed  Google Scholar 

  44. Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104

    CAS  PubMed  Google Scholar 

  45. Luzon J, Sessoli R (2012) Dalton Trans 41:13556–13567

    CAS  PubMed  Google Scholar 

  46. Clemente-Juan JM, Coronado E, Gaita-Ariño A (2012) Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem Soc Rev 41:7464–7478

    CAS  PubMed  Google Scholar 

  47. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148

    CAS  PubMed  Google Scholar 

  48. Zhang P, Guo Y, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257:1728–1763

    CAS  Google Scholar 

  49. Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42:3278–3288

    CAS  PubMed  Google Scholar 

  50. Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33:1084–1099

    CAS  Google Scholar 

  51. Harriman KLM, Murugesu M (2016) An organolanthanide building block approach to single-molecule magnets. Acc Chem Res 49:1158–1167

    CAS  PubMed  Google Scholar 

  52. Wang BW, Gao S (2012) In: Atwood DA (ed) The rare earth elements, fundamental and applications. Wiley, Hoboken, pp 153–160

    Google Scholar 

  53. Winpenny REP (1998) The structures and magnetic properties of complexes containing 3d- and 4f-metals. Chem Soc Rev 27:447–452

    CAS  Google Scholar 

  54. Sakamoto M, Manseki K, Okawa H (2001) d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord Chem Rev 219:379–414

    Google Scholar 

  55. Huang Y-G, Jiang F-L, Hong M-C (2009) Magnetic lanthanide–transition-metal organic–inorganic hybrid materials: from discrete clusters to extended frameworks. Coord Chem Rev 253:2814–2834

    CAS  Google Scholar 

  56. Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388

    CAS  PubMed  Google Scholar 

  57. Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341

    CAS  Google Scholar 

  58. Andruh M, Costes JP, Diaz C, Gao S (2009) 3d-4f combined chemistry: synthetic strategies and magnetic properties. Inorg Chem 48:3342–3359

    CAS  PubMed  Google Scholar 

  59. Brechin EK (ed) (2010) “Molecular magnets” themed issue. Dalton Trans 39:4653–5040

    Google Scholar 

  60. Sharples JW, Collison D (2014) The coordination chemistry and magnetism of some 3d–4f and 4f amino-polyalcohol compounds. Coord Chem Rev 260:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng Y-Z, Zhou G-J, Zheng Z, Winpenny REP (2014) Chem Soc Rev 43:1462–1475

    CAS  PubMed  Google Scholar 

  62. Rosado L, Sañudo EC (2015) Heterometallic 3d–4f single-molecule magnets. Dalton Trans 44:8771–8780

    Google Scholar 

  63. Chow CY, Trivedi ER, Pecoraro V, Zaleski CM (2015) Heterometallic mixed 3d-4f metallacrowns: structural versatility, luminescence, and molecular magnetism, comments. Inorg Chem 35:214–253

    CAS  Google Scholar 

  64. Liu K, Shi W, Cheng P (2015) Toward heterometallic single-molecule magnets: synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord Chem Rev 289–290:74–122

    Google Scholar 

  65. Polyzou CD, Efthymiou CG, Escuer A, Cunha-Silva L, Papatriantafyllopoulou C, Perlepes SP (2013) In search of 3d/4f-metal single-molecule magnets: nickel(II)/lanthanide(III) coordination clusters. Pure Appl Chem 85:315–327

    CAS  Google Scholar 

  66. Vignesh KR, Langley SK, Murray KS, Rajaraman G (2017) Quenching the quantum tunneling of magnetization in heterometallic octanuclear {TMIII 4DyIII 4} (TM = Co and Cr) single-molecule magnets by modification of the bridging ligands and enhancing the magnetic exchange coupling. Chem Eur J 23:1654–1666

    CAS  PubMed  Google Scholar 

  67. Langley SK, Wielechowski DP, Moubaraki B, Murray KS (2016) Enhancing the magnetic blocking temperature and magnetic coercivity of {CrIII 2LnIII 2} single-molecule magnets via bridging ligand modification. Chem Commun 52:10976–10979

    CAS  Google Scholar 

  68. Gupta T, Beg MF, Rajaraman G (2016) Role of single-ion anisotropy and magnetic exchange interactions in suppressing zero-field tunnelling in {3d-4f} single molecule magnets. Inorg Chem 55:11201–11215

    CAS  PubMed  Google Scholar 

  69. Singh SK, Beg MF, Rajaraman G (2016) Role of magnetic exchange interactions in the magnetization relaxation of {3d–4f} single-molecule magnets: a theoretical perspective. Chem Eur J 22:672–680

    CAS  PubMed  Google Scholar 

  70. Li X-L, Min F-Y, Wang C, Lin S-Y, Liu Z, Tang J (2015) Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes. Inorg Chem 54:4337–4344

    CAS  PubMed  Google Scholar 

  71. Langley SK, Le C, Ungur L, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2014) Heterometallic 3d-4f single-molecule magnets: ligand and metal ion influences on the magnetic relaxation. Inorg Chem 53:8970–8978

    Google Scholar 

  72. Langley SK, Wielechowski DP, Vieru V, Chilton NF, Moubaraki B, Abrahams BF, Chibotaru LF, Murray KS (2013) A {CrIII 2DyIII 2} single-molecule magnet: enhancing the blocking temperature through 3d magnetic exchange. Angew Chem Int Ed 52:12014–12019

    CAS  Google Scholar 

  73. Liu J-L, Wu J-Y, Chen Y-C, Mereacre V, Powell AK, Ungur L, Chibotaru LF, Chen X-M, Tong M-L (2014) A heterometallic FeII–DyIII single-molecule magnet with a record anisotropy barrier. Angew Chem Int Ed 53:12966–12970

    CAS  Google Scholar 

  74. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat Chem 3:538–542

    CAS  PubMed  Google Scholar 

  75. Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N2 3−-radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133:14236–14239

    CAS  PubMed  Google Scholar 

  76. Demir S, Gonzalez MI, Darago L, Evans WJ, Long JR (2017) Giant coercivity and high magnetic blocking temperatures for N2 3− radical-bridged dilanthanide complexes upon ligand dissociation. Nat Commun 8:2144. https://doi.org/10.1038/s41467-017-01553-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ding YS, Chilton NF, Winpenny RE, Zheng YZ (2016) On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew Chem Int Ed Engl 55:16071–16074

    CAS  PubMed  Google Scholar 

  78. Chen Y, Liu J, Ungur L, Liu J, Li Q, Wang L, Ni Z, Chibotaru LF, Chen X, Tong ML (2016) Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets. J Am Chem Soc 138:2829–2837

    CAS  PubMed  Google Scholar 

  79. Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R (2016) An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem Sci 7:5181–5191

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu J, Chen Y, Jia J, Liu J, Vieru V, Ungur L, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen X, Tong M (2016) A stable pentagonal bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1,000 K. J Am Chem Soc 138:5441–5450

    CAS  PubMed  Google Scholar 

  81. Zhong ZQ, Mansikkamäki A, Ungur L, Jia JH, Chibotaru LF, Han JB, Wernsdorfer W, Chen XM, Tong ML (2017) Dynamic magnetic and optical insight into a high performance pentagonal bipyramidal DyIII single-ion magnet. Chem Eur J 23:1–9

    Google Scholar 

  82. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 K in dysprosocenium. Nature 548:439–442

    CAS  PubMed  Google Scholar 

  83. Guo S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449

    CAS  Google Scholar 

  84. Bünzli J-CG (2014) Lanthanide coordination chemistry: from old concepts to coordination polymers. J Coord Chem 67:3706–3733

    Google Scholar 

  85. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 11:2729–2755

    Google Scholar 

  86. Eliseeva SV, Bünzli JC (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227

    CAS  PubMed  Google Scholar 

  87. Faulkner S, Pope SJA, Burton-Pye BP (2005) Lanthanide complexes for luminescence imaging applications. Appl Spectrosc Rev 40:1

    CAS  Google Scholar 

  88. Liu S (2004) The role of coordination chemistry in the development of target specific radiopharmaceuticals. Chem Soc Rev 33:445

    CAS  PubMed  Google Scholar 

  89. Amoroso AJ, Pope SJ (2015) Using lanthanide ions in molecular bioimaging. Chem Soc Rev 44:4723–4742

    CAS  PubMed  Google Scholar 

  90. Andruh M (2015) The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans 44:16633–16653

    CAS  PubMed  Google Scholar 

  91. Ruiz J, Mota AJ, Rodríguez-Diéguez A, Titos S, Herrera JM, Ruiz E, Cremades E, Costes JP, Colacio E (2012) Field and dilution effects on the slow relaxation of a luminescent DyO9 low-symmetry single-ion magnet. Chem Commun 48:7916–7918

    CAS  Google Scholar 

  92. Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45:1729–1733

    CAS  Google Scholar 

  93. Luzon J, Bernot K, Hewitt I, Anson CE, Powell AK, Sessoli R (2008) Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear ising model. Phys Rev Lett 100:247205–247204

    PubMed  Google Scholar 

  94. Chibotaru LF, Ungur L, Soncini A (2008) The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. Angew Chem Int Ed 47:4126–4129

    CAS  Google Scholar 

  95. Hewitt IJ, Tang J, Madhu NT, Anson CE, Lan Y, Luzon J, Etienne M, Sessoli R, Powell AK (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49:6352–6356

    CAS  Google Scholar 

  96. Chibotaru LF, Ungur L, Soncini A (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771

    Google Scholar 

  97. Wang Y, Shi W, Li H, Song Y, Fang L, Lan Y, Powell AK, Wernsdorfer W, Ungur L, Chibotaru L, Shen M, Cheng P (2012) A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. Chem Sci 3:3366–3370

    CAS  Google Scholar 

  98. Lin S, Zhao L, Guo Y, Zhang P, Guo Y, Tang J (2012) Two new Dy3 triangles with trinuclear circular helicates and their single-molecule magnet behavior. Inorg Chem 51:10522–10528

    CAS  PubMed  Google Scholar 

  99. Lin S, Guo Y, Guo Y, Zhao L, Zhang P, Ke H, Tang J (2012) Macrocyclic ligand encapsulating dysprosium triangles: axial ligands perturbed magnetic dynamics. Chem Commun 48:6924–6926

    CAS  Google Scholar 

  100. Xue S, Chen X, Zhao L, Guo Y, Tang J (2012) Two bulky-decorated triangular dysprosium aggregates conserving vortex-spin structure. Inorg Chem 51:13264–13270

    CAS  PubMed  Google Scholar 

  101. Hänninen MM, Mota AJ, Aravena D, Ruiz E, Sillanpää R, Camón A, Evangelisti M, Colacio E (2014) Two C3-symmetric Dy3 III complexes with triple di-μ-methoxo-μ-phenoxo bridges, magnetic ground state, and single-molecule magnetic behavior. Chem Eur J 20:8410–8420

    PubMed  Google Scholar 

  102. Grindell R, Vieru V, Pugh T, Chibotaru LF, Layfield RA (2016) Magnetic frustration in a hexaazatrinaphthylene-bridged trimetallic dysprosium single-molecule magnet. Dalton Trans 45:16556–16560

    CAS  PubMed  Google Scholar 

  103. Díaz-Ortega IF, Herrera JM, Gupta T, Rajaraman G, Nojiri H, Colacio E (2017) Design of a family of Ln3 triangles with the HAT ligand (1,4,5,8,9,12-hexaazatriphenylene): single-molecule magnetism. Inorg Chem 15:5594–5610

    Google Scholar 

  104. Novitchi G, Pilet G, Ungur L, Moshchalkov VV, Wernsdorfer W, Chibotaru LF, Luneau D, Powell AK (2012) Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3 single molecule magnets. Chem Sci 3:1169–1176

    CAS  Google Scholar 

  105. Zhang L, Zhang P, Zhao L, Wu J, Guo M, Tang J (2016) Single-molecule magnet behavior in an octanuclear dysprosium(III) aggregate inherited from helical triangular Dy3 SMM-building blocks. Dalton Trans 45:10556–10562

    CAS  PubMed  Google Scholar 

  106. Gysler M, Hallak FE, Ungur L, Marx R, Hakl M, Neugebauer P, Rechkemmer Y, Lan Y, Sheikin I, Orlita M, Anson CE, Powell AK, Sessoli R, Chibotaru LF, Van Slageren J (2016) Multitechnique investigation of Dy3 – implications for coupled lanthanide clusters. Chem Sci 7:4347–4354

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Goura J, Colacio E, Herrera JM, Suturina EA, Kuprov I, Lan Y, Wernsdorfer W, Chandrasekhar V (2017) Heterometallic Zn3 Ln3 ensembles containing (μ6 -CO3) ligand and triangular disposition of Ln3+ ions: analysis of single-molecule toroic (SMT) and single-molecule magnet (SMM) behavior. Chemistry 23:16621–16636

    CAS  PubMed  Google Scholar 

  108. Das C, Vaidya S, Gupta T, Frost JM, Righi M, Brechin EK, Affronte M, Rajaraman G, Shanmugam M (2015) Single-molecule magnetism, enhanced magnetocaloric effect, and toroidal magnetic moments in a family of Ln4 squares. Chem Eur J 21:15639–15650

    CAS  PubMed  Google Scholar 

  109. Guo P, Liu J, Zhang Z, Ungur L, Chibotaru LF, Leng J, Guo F, Tong M (2012) The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg Chem 51:1233–1235

    CAS  PubMed  Google Scholar 

  110. Biswas SD, Gupta T, Singh SK, Pissas M, Rajaraman G, Chandrasekhar V (2016) Observation of slow relaxation and single-molecule toroidal behavior in a family of butterfly-shaped Ln4 complexes. Chem Eur J 22:18532–18550

    CAS  PubMed  Google Scholar 

  111. Li X, Wu J, Tang J, Le Guennic B, Shi W, Cheng P (2016) A planar triangular Dy3 + Dy3 single-molecule magnet with a toroidal magnetic moment. Chem Commun 52:9570–9573

    CAS  Google Scholar 

  112. Ungur L, Langley SK, Hooper TN, Moubaraki B, Brechin EK, Murray KS, Chibotaru LF (2012) Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring. J Am Chem Soc 134:18554–18557

    CAS  PubMed  Google Scholar 

  113. Ungur L, Lin S, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905

    CAS  PubMed  Google Scholar 

  114. Wang G, Weia Y, Wu K (2016) Goblet-shaped pentanuclear lanthanide clusters assembled with a cyclen derivative ligand exhibiting slow magnetic relaxation. Dalton Trans 45:12734–12738

    CAS  PubMed  Google Scholar 

  115. Colacio E, Ruiz-Sanchez J, White FJ, Brechin EK (2011) Strategy for the rational design of asymmetric triply bridged dinuclear 3d-4f single-molecule magnets. Inorg Chem 50:7268

    CAS  PubMed  Google Scholar 

  116. Colacio E, Ruiz J, Mota AJ, Palacios MA, Cremades E, Ruiz E, White FJ, Brechin EK (2012) Family of carboxylate- and nitrate-diphenoxo triply bridged dinuclear NiIILnIII complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): synthesis, experimental and theoretical magneto-structural studies, and single-molecule magnet behavior. Inorg Chem 51:5857–5868

    CAS  PubMed  Google Scholar 

  117. Palacios MA, Titos-Padilla S, Ruiz J, Herrera JM, Pope SJ, Brechin EK, Colacio E (2014) Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands. Inorg Chem 53:1465–1474

    CAS  PubMed  Google Scholar 

  118. Colacio E, Ruiz J, Mota AJ, Palacios MA, Ruiz E, Cremades E, Hänninen MM, Sillanpää R, Brechin EK (2012) CoIILnIII dinuclear complexes (LnIII = Gd, Tb, Dy, Ho and Er) as platforms for 1,5-dicyanamide-bridged tetranuclear CoII 2LnIII 2 complexes: a magneto-structural and theoretical study. C R Chim 15:878–888

    CAS  Google Scholar 

  119. Zabala-Lekuona A, Cepeda J, Oyarzabal I, Rodríguez-Diéguez A, García JA, Seco JM, Colacio E (2017) Rational design of triple-bridged dinuclear ZnIILnIII-based complexes: a structural, magnetic and luminescence study. CrystEngComm 19:256–264

    CAS  Google Scholar 

  120. Oyarzabal I, Artetxe B, Rodríguez-Diéguez A, García JA, Seco JM, Colacio E (2016) A family of acetato-diphenoxo triply bridged dimetallic ZnIILnIII complexes: SMM behavior and luminescent properties. Dalton Trans 45:9712

    CAS  PubMed  Google Scholar 

  121. Xie Q-W, Wu S-Q, Shi W-B, Liu C-M, Cuia AL, Kou H-Z (2014) Heterodinuclear MII–LnIII single molecule magnets constructed from exchange-coupled single ion magnets. Dalton Trans 43:11309–11316

    CAS  PubMed  Google Scholar 

  122. Bender M, Comba P, Demeshko S, Großhauser M, Müller D, Wadepohl H (2015) Theoretically predicted and experimentally observed relaxation pathways of two heterodinuclear 3d-4f complexes. Z Anorg Allg Chem 641(12–13):2291–2299

    CAS  Google Scholar 

  123. Comba P, Enders M, Großhauser M, Hiller M, Müller D, Wadepohla H (2017) Solution and solid state structures and magnetism of a series of linear trinuclear compounds with a hexacoordinate LnIII and two terminal NiII centers. Dalton Trans 46:138–149

    CAS  Google Scholar 

  124. Oyarzabal I, Ruiz J, Seco JM, Evangelisti M, Camón A, Ruiz E, Aravena D, Colacio E (2014) Rational electrostatic design of easy-axis magnetic anisotropy in a ZnII-DyIII-ZnII single-molecule magnet with a high energy barrier. Chem Eur J 20:14262–14269

    CAS  PubMed  Google Scholar 

  125. Oyarzabal I, Ruiz J, Ruiz E, Aravena D, Seco JM, Colacio E (2015) Increasing the effective energy barrier promoted by the change of a counteranion in a Zn–Dy–Zn SMM: slow relaxation via the second excited state. Chem Commun 51:12353–12356

    CAS  Google Scholar 

  126. Oyarzabal I, Rodríguez-Diéguez A, Barquín M, Seco JM, Colacio E (2017) The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn–Dy–Zn complexes with a square-antiprism DyO8 coordination sphere. Dalton Trans 46:4278–4286

    CAS  PubMed  Google Scholar 

  127. Upadhyay A, Singh SK, Das C, Mondol R, Langley SK, Murray KS, Rajaraman G, Shanmugam M (2014) Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion. Chem Commun 50:8838–8841

    CAS  Google Scholar 

  128. Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, Chibotaru LF, Tong M-L (2013) Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem Sci 4:3310–3316

    CAS  Google Scholar 

  129. Titos-Padilla S, Ruiz J, Herrera JM, Brechin EK, Wersndorfer W, Lloret F, Colacio E (2013) Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation. Inorg Chem 52:9620–9626

    CAS  PubMed  Google Scholar 

  130. Watanabe A, Yamashita A, Nakano M, Yamamura T, Kajiwara T (2011) Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chem Eur J 17:7428–7432

    CAS  PubMed  Google Scholar 

  131. Ungur L, Chibotaru LF (2015) Computational modeling of magnetic properties of lanthanide compounds. In: Layfield RA, Murugesu M (eds) Lanthanides and actinides in molecular magnetism. Wiley-VCH, Weinheim, pp 153–184

    Google Scholar 

  132. Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37:506–541

    CAS  PubMed  Google Scholar 

  133. Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist PA, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) MOLCAS 7: the next generation. J Comput Chem 31:224–247

    CAS  PubMed  Google Scholar 

  134. Duncan JA (2009) MOLCAS 7.2. J Am Chem Soc 131:2416–2416

    CAS  PubMed  Google Scholar 

  135. Veryazov V, Widmark PO, Serrano-Andres L, Lindh R, Roos BO (2004) 2MOLCAS as a development platform for quantum chemistry software. Int J Quantum Chem 100:626–635

    CAS  Google Scholar 

  136. Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239

    Google Scholar 

  137. Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh SK, Gupta T, Shanmugam M, Rajaraman G (2014) Unprecedented magnetic relaxation via the fourth excited state in low-coordinate lanthanide single-ion magnets: a theoretical perspective. Chem Commun 50:15513–15516

    CAS  Google Scholar 

  139. Abtab SMT, Maity M, Bhattacharya K, Carolina Sañudo E, Chaudhury M (2012) Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged NiII 2LnIII 2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II) − dysprosium(III) analogue. Inorg Chem 51:10211–10221

    CAS  PubMed  Google Scholar 

  140. Abtab SMT, Majee MC, Maity M, Titiš J, Boča R, Chaudhury M (2014) Tetranuclear hetero-metal [CoII 2LnIII 2] (Ln = Gd, Tb, Dy, Ho, La) complexes involving carboxylato bridges in a rare μ4 − η2:η2 mode: synthesis, crystal structures, and magnetic properties. Inorg Chem 53:1295–1306

    CAS  PubMed  Google Scholar 

  141. Ruiz J, Lorusso G, Evangelisti M, Brechin EK, Pope SJ, Colacio E (2014) Closely-related Zn(II)2Ln(III)2 complexes (Ln(III) = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties. Inorg Chem 53:3586–3594

    CAS  PubMed  Google Scholar 

  142. Maity M, Majee MC, Kundu S, Samanta SK, Carolina Sañudo E, Ghosh S, Chaudhury M (2015) Pentanuclear 3d–4f heterometal complexes of MII 3LnIII 2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) combinations: syntheses, structures, magnetism, and photoluminescence properties. Inorg Chem 54:9715–9726

    CAS  PubMed  Google Scholar 

  143. Goura J, Rogez G, Rivière E, Chandrasekhar V (2014) Hexanuclear, heterometallic, Ni3Ln3 complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue. Inorg Chem 53:7815–7823

    CAS  PubMed  Google Scholar 

  144. Goura J, Chakraborty A, Walsh JPS, Tuna F, Chandrasekhar V (2015) Hexanuclear 3d-4f neutral CoII 2LnIII 4 clusters: synthesis, structure, and magnetism. Cryst Growth Des 15:3157–3165

    CAS  Google Scholar 

  145. Colacio E, Ruiz J, Ruiz E, Cremades E, Krzystek J, Carretta S, Cano J, Guidi T, Wernsdorfer W, Brechin EK (2013) Slow magnetic relaxation in a Co(II)-Y(III) single-ion magnet with positive axial zero-field splitting. Angew Chem Int Ed 52:9130–9134

    CAS  Google Scholar 

  146. Palacios MA, Nehrkorn J, Suturina E, Ruiz E, Gómez-Coca S, Holldack K, Schnegg A, Krzystek J, Moreno JM, Colacio E (2017) Analysis of magnetic anisotropy and the role of magnetic dilution in triggering single-molecule magnet (SMM) behavior in a family of CoIIYIII dinuclear complexes with easy-plane anisotropy. Chemistry 23:11649–11661

    CAS  PubMed  Google Scholar 

  147. Palacios MA, Mota AJ, Ruiz J, Hänninen MM, Sillanpää R, Colacio E (2012) Diphenoxo-bridged NiIILnIII dinuclear complexes as platforms for heterotrimetallic (LnIIINiII)2RuIII systems with a high-magnetic-moment ground state: synthesis, structure, and magnetic properties. Inorg Chem 51:7010–7012

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to express my most sincere gratitude and deep appreciation to all my collaborators, colleagues and students. Their names appear in the reference list. I am also very grateful to Ministerio de Economía y Competitividad (MINECO) of Spain for Project CTQ2014-56312-P and EU Feder Fund, the Junta de Andalucía (FQM-195 and the Project of excellence P11-FQM-7756) and the University of Granada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Colacio .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Prof. Jean Pierre Costes, on the occasion of his 65th birthday in recognition of his synthetic contributions to the field of 3d/4f coordination compounds.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colacio, E. (2018). Mannich Base Ligands as Versatile Platforms for SMMs. In: Chandrasekhar, V., Pointillart, F. (eds) Organometallic Magnets . Topics in Organometallic Chemistry, vol 64. Springer, Cham. https://doi.org/10.1007/3418_2018_4

Download citation

Publish with us

Policies and ethics