Advertisement

pp 1-36 | Cite as

Geometry and Magnetism of Lanthanide Compounds

  • Zhenhua Zhu
  • Jinkui Tang
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

Lanthanide single molecule magnets (Ln-SMMs) were still been considered as the exceptionally promising candidates in high-density data storage and quantum calculation although the single atom magnets with smaller size have been discovered. Recent developments that the intrinsic magnetic properties of Ln-SMMs can be preserved when deposited on the surface of substrates greatly inspired us to make more efforts in facilitating the above practical applications. It is well-known that the single molecule magnet (SMM) behavior is strongly dependent on the coordination environments experienced by the lanthanide ions. Here, we focus on the representative Ln-SMMs with different coordination geometries from the view of coordination numbers, discuss the methods of modulating ligand fields, highlight the importance of constructing predominant bonds, and explain the relationship between the geometry, crystal field, and molecular magnetisms.

Keywords

Coordination geometry Coordination number Lanthanide single molecule magnets (Ln-SMMs) Ligand field Predominant bond Slow magnetic relaxation 

References

  1. 1.
    Cotton S (2006) Introduction to the lanthanides. Lanthanide and actinide chemistry. Wiley, Chichester, pp 1–7.  https://doi.org/10.1002/0470010088.ch1CrossRefGoogle Scholar
  2. 2.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113(7):5110–5148.  https://doi.org/10.1021/cr400018qCrossRefPubMedGoogle Scholar
  3. 3.
    Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11):1728–1763.  https://doi.org/10.1016/j.ccr.2013.01.012CrossRefGoogle Scholar
  4. 4.
    Liddle ST, van Slageren J (2015) Improving f-element single molecule magnets. Chem Soc Rev 44(19):6655–6669.  https://doi.org/10.1039/C5CS00222BCrossRefPubMedGoogle Scholar
  5. 5.
    Tang J, Zhang P (2015) Lanthanide single-ion molecular magnets. Lanthanide single molecule magnets. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-662-46999-6_2CrossRefGoogle Scholar
  6. 6.
    Karraker DG (1970) Coordination of trivalent lanthanide ions. J Chem Educ 47(6):424.  https://doi.org/10.1021/ed047p424CrossRefGoogle Scholar
  7. 7.
    Ishikawa N, Sugita M, Ishikawa T, S-y K, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125(29):8694–8695.  https://doi.org/10.1021/ja029629nCrossRefPubMedGoogle Scholar
  8. 8.
    Perfetti M, Pointillart F, Cador O, Sorace L, Ouahab L (2017) Luminescent molecular magnets. Molecular magnetic materials. Wiley, Weinheim, pp 345–368.  https://doi.org/10.1002/9783527694228.ch14Google Scholar
  9. 9.
    Jiang S-D, Wang B-W, Gao S (2015) Advances in lanthanide single-ion magnets. In: Gao S (ed) Molecular nanomagnets and related phenomena. Springer, Berlin, Heidelberg, pp 111–141.  https://doi.org/10.1007/430_2014_153Google Scholar
  10. 10.
    Sorace L, Gatteschi D (2015) Electronic structure and magnetic properties of lanthanide molecular complexes. Lanthanides and actinides in molecular magnetism. Wiley, Weinheim, pp 1–26.  https://doi.org/10.1002/9783527673476.ch1Google Scholar
  11. 11.
    Ungur L, Chibotaru LF (2017) Ab initio crystal field for lanthanides. Chem Eur J 23(15):3708–3718.  https://doi.org/10.1002/chem.201605102CrossRefPubMedGoogle Scholar
  12. 12.
    Ganivet CR, Ballesteros B, de la Torre G, Clemente-Juan JM, Coronado E, Torres T (2013) Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem Eur J 19(4):1457–1465.  https://doi.org/10.1002/chem.201202600CrossRefPubMedGoogle Scholar
  13. 13.
    Wu J, Jung J, Zhang P, Zhang H, Tang J, Le Guennic B (2016) Cis-trans isomerism modulates the magnetic relaxation of dysprosium single-molecule magnets. Chem Sci 7(6):3632–3639.  https://doi.org/10.1039/C5SC04510JCrossRefGoogle Scholar
  14. 14.
    Chen Y-C, Liu J-L, Ungur L, Liu J, Li Q-W, Wang L-F, Ni Z-P, Chibotaru LF, Chen X-M, Tong M-L (2016) Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets. J Am Chem Soc 138(8):2829–2837.  https://doi.org/10.1021/jacs.5b13584CrossRefPubMedGoogle Scholar
  15. 15.
    Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R (2016) An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem Sci 7(8):5181–5191.  https://doi.org/10.1039/C6SC00279JCrossRefGoogle Scholar
  16. 16.
    Liu J, Chen Y-C, Liu J-L, Vieru V, Ungur L, Jia J-H, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen X-M, Tong M-L (2016) A stable pentagonal bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1000 K. J Am Chem Soc 138(16):5441–5450.  https://doi.org/10.1021/jacs.6b02638CrossRefPubMedGoogle Scholar
  17. 17.
    Ding Y-S, Chilton NF, Winpenny REP, Zheng Y-Z (2016) On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew Chem Int Ed 55(52):16071–16074.  https://doi.org/10.1002/anie.201609685CrossRefGoogle Scholar
  18. 18.
    Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56(38):11445–11449.  https://doi.org/10.1002/anie.201705426CrossRefGoogle Scholar
  19. 19.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442.  https://doi.org/10.1038/nature23447ADSCrossRefPubMedGoogle Scholar
  20. 20.
    Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13(45):20086–20090.  https://doi.org/10.1039/C1CP22689DCrossRefPubMedGoogle Scholar
  21. 21.
    Ungur L, Chibotaru LF (2016) Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg Chem 55(20):10043–10056.  https://doi.org/10.1021/acs.inorgchem.6b01353CrossRefPubMedGoogle Scholar
  22. 22.
    Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471.  https://doi.org/10.1038/srep05471CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Gregson M, Chilton NF, Ariciu A-M, Tuna F, Crowe IF, Lewis W, Blake AJ, Collison D, McInnes EJL, Winpenny REP, Liddle ST (2016) A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. Chem Sci 7(1):155–165.  https://doi.org/10.1039/C5SC03111GCrossRefGoogle Scholar
  24. 24.
    Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, Chibotaru LF, Tong M-L (2013) Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem Sci 4(8):3310–3316.  https://doi.org/10.1039/C3SC50843ACrossRefGoogle Scholar
  25. 25.
    Sun W-B, Yan P-F, Jiang S-D, Wang B-W, Zhang Y-Q, Li H-F, Chen P, Wang Z-M, Gao S (2016) High symmetry or low symmetry, that is the question – high performance Dy(III) single-ion magnets by electrostatic potential design. Chem Sci 7(1):684–691.  https://doi.org/10.1039/C5SC02986DADSCrossRefPubMedGoogle Scholar
  26. 26.
    Blagg RJ, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes EJL, Chibotaru LF, Winpenny REP (2013) Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat Chem 5(8):673–678.  https://doi.org/10.1038/nchem.1707CrossRefPubMedGoogle Scholar
  27. 27.
    Cotton S (2006) Coordination chemistry of the lanthanides. Lanthanide and actinide chemistry. Wiley, Chichester, pp 35–60.  https://doi.org/10.1002/0470010088.ch4CrossRefGoogle Scholar
  28. 28.
    Lawrance GA (2009) Shape. Introduction to coordination chemistry. Wiley, Chichester, pp 83–124.  https://doi.org/10.1002/9780470687123.ch4Google Scholar
  29. 29.
    Linton C, Gaudet DM, Schall H (1986) Laser spectroscopy of dysprosium monoxide: observation and analysis of several low-lying electronic states. J Mol Spectrosc 115(1):58–73.  https://doi.org/10.1016/0022-2852(86)90275-4ADSCrossRefGoogle Scholar
  30. 30.
    Chilton NF, Goodwin CAP, Mills DP, Winpenny REP (2015) The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem Commun 51(1):101–103.  https://doi.org/10.1039/C4CC08312ACrossRefGoogle Scholar
  31. 31.
    Zhang P, Zhang L, Wang C, Xue S, Lin S-Y, Tang J (2014) Equatorially coordinated lanthanide single ion magnets. J Am Chem Soc 136(12):4484–4487.  https://doi.org/10.1021/ja500793xCrossRefPubMedGoogle Scholar
  32. 32.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2(11):2078–2085.  https://doi.org/10.1039/C1SC00513HCrossRefGoogle Scholar
  33. 33.
    Brown AJ, Pinkowicz D, Saber MR, Dunbar KR (2015) A trigonal-pyramidal erbium(III) single-molecule magnet. Angew Chem Int Ed 54(20):5864–5868.  https://doi.org/10.1002/anie.201411190CrossRefGoogle Scholar
  34. 34.
    Zhang P, Jung J, Zhang L, Tang J, Le Guennic B (2016) Elucidating the magnetic anisotropy and relaxation dynamics of low-coordinate lanthanide compounds. Inorg Chem 55(4):1905–1911.  https://doi.org/10.1021/acs.inorgchem.5b02792CrossRefPubMedGoogle Scholar
  35. 35.
    Harriman KLM, Brosmer JL, Ungur L, Diaconescu PL, Murugesu M (2017) Pursuit of record breaking energy barriers: a study of magnetic axiality in diamide ligated DyIII single-molecule magnets. J Am Chem Soc 139(4):1420–1423.  https://doi.org/10.1021/jacs.6b12374CrossRefPubMedGoogle Scholar
  36. 36.
    Allouche F, Lapadula G, Siddiqi G, Lukens WW, Maury O, Le Guennic B, Pointillart F, Dreiser J, Mougel V, Cador O, Copéret C (2017) Magnetic memory from site isolated Dy(III) on silica materials. ACS Cent Sci 3(3):244–249.  https://doi.org/10.1021/acscentsci.7b00035CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Zhang G, Gil-Ramírez G, Markevicius A, Browne C, Vitorica-Yrezabal IJ, Leigh DA (2015) Lanthanide template synthesis of trefoil knots of single handedness. J Am Chem Soc 137(32):10437–10442.  https://doi.org/10.1021/jacs.5b07069CrossRefPubMedGoogle Scholar
  38. 38.
    Danon JJ, Krüger A, Leigh DA, Lemonnier J-F, Stephens AJ, Vitorica-Yrezabal IJ, Woltering SL (2017) Braiding a molecular knot with eight crossings. Science 355(6321):159–162.  https://doi.org/10.1126/science.aal1619ADSCrossRefPubMedGoogle Scholar
  39. 39.
    Bolliger JL, Belenguer AM, Nitschke JR (2013) Enantiopure water-soluble [Fe4L6] cages: host–guest chemistry and catalytic activity. Angew Chem Int Ed 52(31):7958–7962.  https://doi.org/10.1002/anie.201302136CrossRefGoogle Scholar
  40. 40.
    Percástegui EG, Mosquera J, Nitschke JR (2017) Anion exchange renders hydrophobic capsules and cargoes water-soluble. Angew Chem Int Ed 56(31):9136–9140.  https://doi.org/10.1002/anie.201705093CrossRefGoogle Scholar
  41. 41.
    Meihaus KR, Rinehart JD, Long JR (2011) Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes. Inorg Chem 50(17):8484–8489.  https://doi.org/10.1021/ic201078rCrossRefPubMedGoogle Scholar
  42. 42.
    Konig SN, Chilton NF, Maichle-Mossmer C, Pineda EM, Pugh T, Anwander R, Layfield RA (2014) Fast magnetic relaxation in an octahedral dysprosium tetramethyl-aluminate complex. Dalton Trans 43(8):3035–3038.  https://doi.org/10.1039/C3DT52337CCrossRefPubMedGoogle Scholar
  43. 43.
    Liu S-S, Meng Y-S, Zhang Y-Q, Meng Z-S, Lang K, Zhu Z-L, Shang C-F, Wang B-W, Gao S (2017) A six-coordinate dysprosium single-ion magnet with trigonal-prismatic geometry. Inorg Chem 56(13):7320–7323.  https://doi.org/10.1021/acs.inorgchem.7b00952CrossRefPubMedGoogle Scholar
  44. 44.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N23− radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133(36):14236–14239.  https://doi.org/10.1021/ja206286hCrossRefPubMedGoogle Scholar
  45. 45.
    Li Q-W, Wan R-C, Chen Y-C, Liu J-L, Wang L-F, Jia J-H, Chilton NF, Tong M (2016) Unprecedented hexagonal bipyramidal single-ion magnets based on metallacrowns. Chem Commun.  https://doi.org/10.1039/C6CC06924J
  46. 46.
    AlDamen MA, Clemente-Juan JM, Coronado E, Martí-Gastaldo C, Gaita-Ariño A (2008) Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc 130(28):8874–8875.  https://doi.org/10.1021/ja801659mCrossRefPubMedGoogle Scholar
  47. 47.
    Jiang S-D, Wang B-W, Su G, Wang Z-M, Gao S (2010) A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed 49(41):7448–7451.  https://doi.org/10.1002/anie.201004027CrossRefGoogle Scholar
  48. 48.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40(6):3092–3104.  https://doi.org/10.1039/C0CS00185FCrossRefPubMedGoogle Scholar
  49. 49.
    Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, S-y K (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg Chem 47(22):10217–10219.  https://doi.org/10.1021/ic8014892CrossRefPubMedGoogle Scholar
  50. 50.
    Takamatsu S, Ishikawa N (2007) A theoretical study of a drastic structural change of bis(phthalocyaninato)lanthanide by ligand oxidation: towards control of ligand field strength and magnetism of single-lanthanide-ionic single molecule magnet. Polyhedron 26(9):1859–1862.  https://doi.org/10.1016/j.poly.2006.09.020CrossRefGoogle Scholar
  51. 51.
    Clemente-Juan JM, Coronado E, Gaita-Ariño A (2015) Mononuclear lanthanide complexes: use of the crystal field theory to design single-ion magnets and spin qubits. Lanthanides and actinides in molecular magnetism. Wiley, Weinheim, pp 27–60.  https://doi.org/10.1002/9783527673476.ch2Google Scholar
  52. 52.
    Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Palii A (2012) Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. Inorg Chem 51(22):12565–12574.  https://doi.org/10.1021/ic302068cCrossRefPubMedGoogle Scholar
  53. 53.
    Barsukova M, Izarova NV, Biboum RN, Keita B, Nadjo L, Ramachandran V, Dalal NS, Antonova NS, Carbó JJ, Poblet JM, Kortz U (2010) Polyoxopalladates encapsulating yttrium and lanthanide ions, [XIIIPdII12(AsPh)8O32]5− (X=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Chem Eur J 16(30):9076–9085.  https://doi.org/10.1002/chem.201000631CrossRefPubMedGoogle Scholar
  54. 54.
    Li X-L, Li H, Chen D-M, Wang C, Wu J, Tang J, Shi W, Cheng P (2015) Planar Dy3 + Dy3 clusters: design, structure and axial ligand perturbed magnetic dynamics. Dalton Trans 44(47):20316–20320.  https://doi.org/10.1039/C5DT03931BCrossRefPubMedGoogle Scholar
  55. 55.
    Bi Y, Guo Y-N, Zhao L, Guo Y, Lin S-Y, Jiang S-D, Tang J, Wang B-W, Gao S (2011) Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chem Eur J 17(44):12476–12481.  https://doi.org/10.1002/chem.201101838CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang P, Zhang L, Lin S-Y, Xue S, Tang J (2013) Modulating magnetic dynamics of Dy2 system through the coordination geometry and magnetic interaction. Inorg Chem 52(8):4587–4592.  https://doi.org/10.1021/ic400150fCrossRefPubMedGoogle Scholar
  57. 57.
    Riddell IA, Hristova YR, Clegg JK, Wood CS, Breiner B, Nitschke JR (2013) Five discrete multinuclear metal-organic assemblies from one ligand: deciphering the effects of different templates. J Am Chem Soc 135(7):2723–2733.  https://doi.org/10.1021/ja311285bCrossRefPubMedGoogle Scholar
  58. 58.
    Wei R-J, Tao J, Huang R-B, Zheng L-S (2013) Anion-dependent spin crossover and coordination assembly based on [Fe(tpa)]2+ [tpa = tris(2-pyridylmethyl)amine] and [N(CN)2]: square, zigzag, dimeric, and [4+1]-cocrystallized complexes. Eur J Inorg Chem 2013(5–6):916–926.  https://doi.org/10.1002/ejic.201200541CrossRefGoogle Scholar
  59. 59.
    Cook TR, Stang PJ (2015) Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem Rev 115(15):7001–7045.  https://doi.org/10.1021/cr5005666CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang L, Zhang P, Zhao L, Wu J, Guo M, Tang J (2015) Anions influence the relaxation dynamics of mono-μ3-OH-capped triangular dysprosium aggregates. Inorg Chem 54(11):5571–5578.  https://doi.org/10.1021/acs.inorgchem.5b00702CrossRefPubMedGoogle Scholar
  61. 61.
    Guo Y-N (2012) Relaxation dynamics of dysprosium(III) single molecule magnets. PhD thesis, Changchun Institute of Applied Chemistry, Chinese Academy of ScienceGoogle Scholar
  62. 62.
    McAdams SG, Ariciu A-M, Kostopoulos AK, Walsh JPS, Tuna F (2017) Molecular single-ion magnets based on lanthanides and actinides: design considerations and new advances in the context of quantum technologies. Coord Chem Rev 346:216–239.  https://doi.org/10.1016/j.ccr.2017.03.015CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunP. R. China

Personalised recommendations