Skip to main content

Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyl Compounds

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 63))

Abstract

Allylic alcohols are very versatile compounds which are used in a large variety of industrial processes. Transfer hydrogenation of α,β-unsaturated carbonyl compounds is a very appealing approach to obtain allylic alcohols. It avoids the use of stoichiometric and hazardous reagents such as NaBH4 or LiAlH4. Furthermore, compared to classical catalytic hydrogenations, these reactions do not need special equipment such as autoclaves or high-pressure reactors. Thus, protocols for transfer hydrogenation are cheaper and safer. One of the major problems in the reduction of unsaturated carbonyl compounds is to achieve high chemoselectivity. Free energy barriers for the reduction of carbonyl compounds and for the reduction of conjugated carbon-carbon double bonds are often very close in value. For that reason, mixtures of products as well as fully reduced products are often obtained making the scope of many catalysts limited. Herein we review the literature on selective transfer hydrogenation of α,β-unsaturated carbonyl compounds to the allylic alcohols using soluble transition metal complexes as catalysts. Ruthenium is the most employed metal in this field followed by iridium. In addition, some examples using complexes based on other transition metals including some first-row transition metals were found. This is a rapidly growing field. The review is structured according to the metals and to the hydrogen source used. In addition to these reductions catalysed by transition metal-based catalysts, there exists another type of transfer hydrogenation which follows a different mechanism which is known as the Meerwein-Ponndorf-Verley (MPV) reaction. This reaction uses metal alkoxide catalysts based on cheap metals such as aluminium. Whereas the original catalysts such as aluminium tri-isopropoxide were very slow, new variants have been developed that are much faster. The mechanisms reported for the MPV reaction and the transfer hydrogenation are briefly summarized, and the most interesting features of all references cited in this work are highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ito J-I, Nishiyama H (2014). Tetrahedron Lett 55(20):3153–3166

    CAS  Google Scholar 

  2. Wang D, Astruc D (2015). Chem Rev 115(13):6621–6686

    CAS  PubMed  Google Scholar 

  3. Štefane B, Wills M, Herrera RP, Miller DC, Wang L, Obora Y, Ma X, Perez F (2016) In: Guillena G, Ramón DJ (eds) Hydrogen transfer reactions. Reductions and beyond. Springer, Cham

    Google Scholar 

  4. Matsunami A, Kayaki Y (2018). Tetrahedron Lett 59(6):504–513

    CAS  Google Scholar 

  5. Pandey P, Dutta I, Bera JK (2016). Proc Natl Acad Sci India Sect A 86(4):561–579

    CAS  Google Scholar 

  6. Zhou J (2016). Appl Catal A 515:101–107

    CAS  Google Scholar 

  7. Clapham SE, Hadzovic A, Morris RH (2004). Coord Chem Rev 248(21–24):2201–2237

    CAS  Google Scholar 

  8. Dub PA, Ikariya T (2013). J Am Chem Soc 135(7):2604–2619

    CAS  PubMed  Google Scholar 

  9. Dub PA, Gordon JC (2016). Dalton Trans 45(16):6756–6781

    CAS  PubMed  Google Scholar 

  10. Dub PA, Gordon JC (2017). ACS Catal 7(10):6635–6655

    CAS  Google Scholar 

  11. Cohen R, Graves CR, Nguyen ST, Martin JML, Ratner MA (2004). J Am Chem Soc 126(45):14796–14803

    CAS  PubMed  Google Scholar 

  12. Kliewer CJ, Bieri M, Somorjai GA (2009). J Am Chem Soc 131(29):9958–9966

    CAS  PubMed  Google Scholar 

  13. Krähling L, Krey J, Jakobson G, Grolig J, Miksche L (2000) Allyl compounds. Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a01_425

    Chapter  Google Scholar 

  14. Chapuis C, Jacoby D (2001). Appl Catal A 221(1):93–117

    CAS  Google Scholar 

  15. Franke R, Selent D, Börner A (2012). Chem Rev 112(11):5675–5732

    CAS  PubMed  Google Scholar 

  16. Pirnot MT, Rankic DA, Martin DBC, MacMillan DWC (2013). Science 339(6127):1593–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stolle A, Gallert T, Schmoeger C, Ondruschka B (2013). RSC Adv 3(7):2112–2153

    CAS  Google Scholar 

  18. Matsumura K, Hashiguchi S, Ikariya T, Noyori R (1997). J Am Chem Soc 119(37):8738–8739

    CAS  Google Scholar 

  19. Shatskiy A, Kivijaervi T, Lundberg H, Tinnis F, Adolfsson H (2015). ChemCatChem 7(23):3818–3821

    CAS  Google Scholar 

  20. Margalef J, Slagbrand T, Tinnis F, Adolfsson H, Dieguez M, Pamies O (2016). Adv Synth Catal 358(24):4006–4018

    CAS  Google Scholar 

  21. Yamada I, Noyori R (2000). Org Lett 2(22):3425–3427

    CAS  PubMed  Google Scholar 

  22. Hennig M, Puntener K, Scalone M (2000). Tetrahedron Asymmetry 11(9):1849–1858

    CAS  Google Scholar 

  23. Marshall JA, Bourbeau MP (2003). Org Lett 5(18):3197–3199

    CAS  PubMed  Google Scholar 

  24. Lockwood SF, Tang PC, Nadolski G, Fang Z, Du Y, Geiss W, Williams R, Burdick W, Yang M (2006) Methods for synthesis of chiral intermediates of carotenoids, carotenoid analogs, and carotenoid derivatives. Aiea Patent WO2006039685A2

    Google Scholar 

  25. Guo M, Li D, Sun Y, Zhang Z (2004). Synlett 4:741–743

    Google Scholar 

  26. Fang Z, Wills M (2014). Org Lett 16(2):374–377

    CAS  PubMed  Google Scholar 

  27. Fang Z, Wills M (2013). J Org Chem 78(17):8594–8605

    CAS  PubMed  Google Scholar 

  28. Fang Z, Clarkson GJ, Wills M (2013). Tetrahedron Lett 54(50):6834–6837

    CAS  Google Scholar 

  29. Vyas VK, Knighton RC, Bhanage BM, Wills M (2018). Org Lett 20(4):975–978

    CAS  PubMed  Google Scholar 

  30. Morris DJ, Hayes AM, Wills M (2006). J Org Chem 71(18):7035–7044

    CAS  PubMed  Google Scholar 

  31. Carmona D, Lahoz FJ, Atencio R, Oro LA, Lamata MP, Viguri F, San José E, Vega C, Reyes J, Joó F, Kathó Á (1999). Chem Eur J 5(5):1544–1564

    CAS  Google Scholar 

  32. Monnereau L, Cartigny D, Scalone M, Ayad T, Ratovelomanana-Vidal V (2015). Chem Eur J 21(33):11799–11806

    CAS  PubMed  Google Scholar 

  33. Chen Y-C, Wu T-F, Jiang L, Deng J-G, Liu H, Zhu J, Jiang Y-Z (2005). J Org Chem 70(3):1006–1010

    CAS  PubMed  Google Scholar 

  34. Touge T, Hakamata T, Nara H, Kobayashi T, Sayo N, Saito T, Kayaki Y, Ikariya T (2011). J Am Chem Soc 133(38):14960–14963

    CAS  PubMed  Google Scholar 

  35. Parekh V, Ramsden JA, Wills M (2012). Cat Sci Technol 2(2):406–414

    CAS  Google Scholar 

  36. Hannedouche J, Kenny JA, Walsgrove T, Wills M (2002). Synlett 2:263–266

    Google Scholar 

  37. Peach P, Cross DJ, Kenny JA, Mann I, Houson I, Campbell L, Walsgrove T, Wills M (2006). Tetrahedron 62(8):1864–1876

    CAS  Google Scholar 

  38. Iyer S, Sattar AK (2003). Indian J Chem Sect B Org Chem Incl Med Chem 42B(11):2805–2807

    CAS  Google Scholar 

  39. Baratta W, Siega K, Rigo P (2007). Adv Synth Catal 349(10):1633–1636

    CAS  Google Scholar 

  40. Putignano E, Bossi G, Rigo P, Baratta W (2012). Organometallics 31(3):1133–1142

    CAS  Google Scholar 

  41. Paul B, Chakrabarti K, Kundu S (2016). Dalton Trans 45(27):11162–11171

    CAS  PubMed  Google Scholar 

  42. Baldino S, Facchetti S, Zanotti-Gerosa A, Nedden HG, Baratta W (2016). ChemCatChem 8(13):2279–2288

    CAS  Google Scholar 

  43. Baldino S, Baratta W, Blackaby A, Bryan RC, Facchetti S, Jurcik V, Nedden HG (2016) Preparation of benzo[h]quinoline ligands and complexes thereof. WO2016193761A1

    Google Scholar 

  44. Wang T, Hao X-Q, Zhang X-X, Gong J-F, Song M-P (2011). Dalton Trans 40(35):8964–8976

    CAS  PubMed  Google Scholar 

  45. Farrar-Tobar RA, Wei Z, Jiao H, Hinze S, de Vries JG (2018). Chem Eur J 24(11):2725–2734

    CAS  PubMed  Google Scholar 

  46. Beck CM, Rathmill SE, Park YJ, Chen J, Crabtree RH, Liable-Sands LM, Rheingold AL (1999). Organometallics 18(25):5311–5317

    CAS  Google Scholar 

  47. Chen Y-Z, Chan WC, Lau CP, Chu HS, Lee HL, Jia G (1997). Organometallics 16(6):1241–1246

    CAS  Google Scholar 

  48. Abu-Hasanayn F, Goldman ME, Goldman AS (1992). J Am Chem Soc 114(7):2520–2524

    CAS  Google Scholar 

  49. Mebi CA, Nair RP, Frost BJ (2007). Organometallics 26(2):429–438

    CAS  Google Scholar 

  50. Joo F, Benyei A (1989). J Organomet Chem 363(1–2):C19–C21

    CAS  Google Scholar 

  51. Bui TK, Arcelli A (1985). Tetrahedron Lett 26(28):3365–3368

    Google Scholar 

  52. Huo H, Zhou Z, Zhang A, Wu L (2012). Res Chem Intermed 38(1):261–268

    CAS  Google Scholar 

  53. Zhou Z, Huo H (2013). Curr Catal 2(1):13–16

    CAS  Google Scholar 

  54. Bonrath W, Medlock JA, Wuestenberg B, Schuetz J, Netscher T (2015) Selective transfer hydrogenation of citral or ethylcitral. WO2015004116, to DSM IP Assets bv

    Google Scholar 

  55. Khai BT, Arcelli A (1996). Tetrahedron Lett 37(36):6599–6602

    CAS  Google Scholar 

  56. Szatmari I, Papp G, Joo F, Katho A (2015). Catal Today 247:14–19

    CAS  Google Scholar 

  57. Wu X, Li X, King F, Xiao J (2005). Angew Chem Int Ed 44(22):3407–3411

    CAS  Google Scholar 

  58. James BR, Morris RH (1978). J Chem Soc Chem Commun 21:929–930

    Google Scholar 

  59. Sluijter SN, Elsevier CJ (2014). Organometallics 33(22):6389–6397

    CAS  Google Scholar 

  60. Wang R, Tang Y, Xu M, Meng C, Li F (2018). J Org Chem 83(4):2274–2281

    CAS  PubMed  Google Scholar 

  61. Wu X, Liu J, Li X, Zanotti-Gerosa A, Hancock F, Vinci D, Ruan J, Xiao J (2006). Angew Chem Int Ed 45(40):6718–6722

    CAS  Google Scholar 

  62. Himeda Y, Onozawa-Komatsuzaki N, Miyazawa S, Sugihara H, Hirose T, Kasuga K (2008). Chem Eur J 14(35):11076–11081

    CAS  PubMed  Google Scholar 

  63. Zhou Z, Ma Q, Zhang A, Wu L (2011). Appl Organomet Chem 25(12):856–861

    CAS  Google Scholar 

  64. Talwar D, Wu X, Saidi O, Salguero NP, Xiao J (2014). Chem Eur J 20(40):12835–12842

    CAS  PubMed  Google Scholar 

  65. Wang W, Ge K, Bao M (2015) Method for preparing allyl alcohol from α,β-unsaturated aldehyde or ketone. Peop. Rep. China Patent CN104945208, to Dalian University of Technology

    Google Scholar 

  66. Yang Z, Zhu Z, Luo R, Qiu X, Liu J-T, Yang J-K, Tang W (2017). Green Chem 19(14):3296–3301

    CAS  Google Scholar 

  67. Zhang Y-M, Yuan M-L, Liu W-P, Xie J-H, Zhou Q-L (2018). Org Lett 20(15):4486–4489

    CAS  PubMed  Google Scholar 

  68. Plank TN, Drake JL, Kim DK, Funk TW (2012). Adv Synth Catal 354(4):597–601

    CAS  Google Scholar 

  69. Funk TW, Mahoney AR, Sponenburg RA, Zimmerman KP, Kim DK, Harrison EE (2018). Organometallics 37(7):1133–1140

    CAS  Google Scholar 

  70. Zuo W, Lough AJ, Li YF, Morris RH (2013). Science 342(6162):1080–1083

    CAS  PubMed  Google Scholar 

  71. Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais J-B (2017). Org Lett 19(13):3656–3659

    CAS  PubMed  Google Scholar 

  72. Bigler R, Huber R, Mezzetti A (2015). Angew Chem Int Ed 54(17):5171–5174

    CAS  Google Scholar 

  73. Mikhailine A, Morris RH, Lagaditis PO, Zuo W (2013) Preparation of iron complex catalysts with unsymmetrical PNN’P ligands. WO2013173930, to University of Toronto

    Google Scholar 

  74. Smith SAM, Morris RH (2015). Synthesis 47(12):1775–1779

    CAS  Google Scholar 

  75. Mikhailine A, Lough AJ, Morris RH (2009). J Am Chem Soc 131(4):1394–1395

    CAS  PubMed  Google Scholar 

  76. Meyer N, Lough AJ, Morris RH (2009). Chem Eur J 15(22):5605–5610

    CAS  PubMed  Google Scholar 

  77. Iyer S, Sattar AK (1998). Synth Commun 28(10):1721–1725

    CAS  Google Scholar 

  78. Phukan P, Sudalai A (2000). Synth Commun 30(13):2401–2405

    CAS  Google Scholar 

  79. Wienhoefer G, Westerhaus FA, Junge K, Beller M (2013). J Organomet Chem 744:156–159

    CAS  Google Scholar 

  80. Liu M, Zhou F, Jia Z, Li C-J (2014). Org Chem Front 1(2):161–166

    CAS  Google Scholar 

  81. Mazza S, Scopelliti R, Hu X (2015). Organometallics 34(8):1538–1545

    CAS  Google Scholar 

  82. Jiang L, Wu T-F, Chen Y-C, Zhu J, Deng J-G (2006). Org Biomol Chem 4(17):3319–3324

    CAS  PubMed  Google Scholar 

  83. Meerwein H, Schmidt R (1925). Justus Liebigs Ann Chem 444:221–238

    CAS  Google Scholar 

  84. Verley A (1925). Bull Soc Chim Fr 37:537–542

    CAS  Google Scholar 

  85. Ponndorf W (1926). Angew Chem 39:138–143

    CAS  Google Scholar 

  86. Nakano T, Umano S, Kino Y, Ishii Y, Ogawa M (1988). J Org Chem 53(16):3752–3757

    CAS  Google Scholar 

  87. Hua Y, Guo Z, Suo H, Wei X (2015). J Organomet Chem 794:59–64

    CAS  Google Scholar 

  88. Han H-F, Zhang S-F, Guo Z-Q, Tong H-B, Wei X-H (2015). Polyhedron 99:71–76

    CAS  Google Scholar 

  89. Hua Y, Guo Z, Han H, Wei X (2017). Organometallics 36(4):877–883

    CAS  Google Scholar 

  90. Han H, Guo Z, Zhang S, Hua Y, Wei X (2017). Polyhedron 126:214–219

    CAS  Google Scholar 

  91. de Graauw CF, Peters JA, van Bekkum H, Huskens J (1994). Synthesis 10:1007–1017

    Google Scholar 

  92. Dirk Klomp UH, Peters JA (2007) In: deVries JG, Elsevier CJ (eds) The handbook of homogeneous hydrogenation. Wiley-VCH, Weinheim, pp 585–630. https://doi.org/10.1002/9783527619382.ch20

    Chapter  Google Scholar 

  93. Graves CR, Campbell EJ, Nguyen ST (2005). Tetrahedron Asymmetry 16(21):3460–3468

    CAS  Google Scholar 

  94. McNerney B, Whittlesey B, Cordes DB, Krempner C (2014). Chem Eur J 20(46):14959–14964

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farrar-Tobar, R.A., Tin, S., de Vries, J.G. (2018). Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyl Compounds. In: Dixneuf, P., Soulé, JF. (eds) Organometallics for Green Catalysis. Topics in Organometallic Chemistry, vol 63. Springer, Cham. https://doi.org/10.1007/3418_2018_23

Download citation

Publish with us

Policies and ethics