Skip to main content

Hybrid Organic–Inorganic Cyanide-Bridged Networks

  • Chapter
  • First Online:
Book cover Organometallic Magnets

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 64))

Abstract

Hybrid organic–inorganic CN-bridged networks are an important and versatile group of molecular magnets. Cyanide ligands mediate relatively strong magnetic interactions and at the same time allow easy design of polynuclear assemblies via building block approach. Introduction of organic ligands allows effective manipulation of topology and dimensionality, enabling formation of discrete polynuclear structures, chains and layers as well as intricate 3D architectures. Organic molecules in hybrid systems can act as blocking or bridging ligands as well as guest molecules. Most importantly, apart from directing the structure formation, organic ligands can be used to induce additional desired properties. In this chapter, we present numerous examples of hybrid CN-bridged assemblies to illustrate their diverse functionalities. They include single molecule (SMMs) and single chain magnets (SCMs), magnetic sponges, multi-switchable spin-crossover (SCO) and charge-transfer systems as well as materials combining magnetic ordering with optical activity or luminescence. Current efforts in the research of CN-bridged systems concentrate on several topics connected with their potential applications, like search for materials with high critical temperature of magnetic ordering, development of bistable systems responsive to multiple stimuli, or surface deposition and formation of heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verdaguer M, Bleuzen A, Marvaud V et al (1999) Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord Chem Rev 190–192:1023–1047

    Google Scholar 

  2. Robin MB (1962) The color and electronic configurations of Prussian blue. Inorg Chem 1:337–342

    CAS  Google Scholar 

  3. Ito A, Suenaga M, Ono K (1968) Mossbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J Chem Phys 48:3597–3599

    CAS  Google Scholar 

  4. Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703

    CAS  Google Scholar 

  5. Holmes SM, Girolami GS (1999) Sol-gel synthesis of KVII[CrIII(CN)6]∙2H2O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C. J Am Chem Soc 121:5593–5594

    CAS  Google Scholar 

  6. Newton GN, Nihei M, Oshio H (2011) Cyanide-bridged molecular squares – the building units of Prussian blue. Eur J Inorg Chem 2011:3031–3042

    CAS  Google Scholar 

  7. Korzeniak T, Stadnicka K, Rams M, Sieklucka B (2004) Grid-type two-dimensional magnetic multinuclear metal complex: strands of {[CuII(μ-4,4′-bpy)]2+}n cross-linked by Octacyanotungstate(V) ions. Inorg Chem 43:4811–4813

    CAS  PubMed  Google Scholar 

  8. Larionova J, Gross M, Pilkington M, Andres H, Stoeckli-Evans H, Güdel HU, Decurtins S (2000) High-spin molecules: a novel Cyano-bridged MnII 9MoV 6 molecular cluster with a S = 51/2 ground state and ferromagnetic intercluster ordering at low temperatures. Angew Chem Int Ed 39:1605–1609

    CAS  Google Scholar 

  9. Zhong ZJ, Seino H, Mizobe Y, Hidai M, Fujishima A, Ohkoshi S, Hashimoto K (2000) A high-spin cyanide-bridged Mn9W6 cluster (S = 39/2) with a full-capped cubane structure. J Am Chem Soc 122:2952–2953

    CAS  Google Scholar 

  10. Bonadio F, Gross M, Stoeckli-Evans H, Decurtins S (2002) High-spin molecules: synthesis, X-ray characterization, and magnetic behavior of two new cyano-bridged NiII 9MoV 6 and NiII 9WV 6 clusters with a S = 12 ground state. Inorg Chem 41:5891–5896

    CAS  PubMed  Google Scholar 

  11. Song Y, Zhang P, Ren X-M, Shen X-F, Li Y-Z, You X-Z (2005) Octacyanometallate-based single-molecule magnets: CoII 9MV 6 (M = W, Mo). J Am Chem Soc 127:3708–3709

    CAS  PubMed  Google Scholar 

  12. Freedman DE, Bennett MV, Long JR (2006) Symmetry-breaking substitutions of [Re(CN)8]3− into the centered, face-capped octahedral clusters (CH3OH)24M9M′6(CN)48 (M = Mn, Co; M′ = Mo, W). Dalton Trans:2829–2834

    Google Scholar 

  13. Ma SL, Ren S, Ma Y, Liao DZ, Yan SP (2009) A high-spin cyanide-bridged Mo6Mn9 cluster: crystal structure and magnetism. Struct Chem 20:161–167

    CAS  Google Scholar 

  14. Podgajny R, Chorazy S, Nitek W, Rams M, Majcher AM, Marszałek B, Żukrowski J, Kapusta C, Sieklucka B (2013) Co–NC–W and Fe–NC–W electron-transfer channels for thermal bistability in trimetallic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster. Angew Chem Int Ed 52:896–900

    CAS  Google Scholar 

  15. Chorazy S, Podgajny R, Nogaś W, Nitek W, Kozieł M, Rams M, Juszyńska-Gałązka E, Żukrowski J, Kapusta C, Nakabayashi K, Fujimoto T, Ohkoshi S (2014) Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. Chem Commun 50:3484–3487

    CAS  Google Scholar 

  16. Chorazy S, Stanek JJ, Nogaś W, Majcher AM, Rams M, Kozieł M, Juszyńska-Gałązka E, Nakabayashi K, Ohkoshi S, Sieklucka B, Podgajny R (2016) Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution. J Am Chem Soc 138:1635–1646

    CAS  PubMed  Google Scholar 

  17. Lim JH, Yoo JH, Kim HC, Hong CS (2006) Surface modification of a six-capped body-centered cube Ni9W6 cluster: structure and single-molecule magnetism. Angew Chem Int Ed 45:7424–7426

    CAS  Google Scholar 

  18. Lim JH, Yoo HS, Kim JI, Yoon JH, Yang N, Koh EK, Park J-G, Hong CS (2008) A facially capped body-centered Ni9W6 cubane modified with sulfur-containing bidentate ligands: structure and magnetic properties. Eur J Inorg Chem:3428–3431

    Google Scholar 

  19. Lim JH, Yoo HS, Yoon JH, Koh EK, Kim HC, Hong CS (2008) Structure and magnetic properties of cyanide-bridged NiII 9MoV 6 cluster modified by bidentate capping ligands. Polyhedron 27:299–303

    CAS  Google Scholar 

  20. Hilfiger MG, Zhao H, Prosvirin A, Wernsdorfer W, Dunbar KM (2009) Molecules based on M(V) (M = Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[m-CN]30[WV(CN)3]6}. Dalton Trans:5155–5163

    Google Scholar 

  21. Nowicka B, Stadnicka K, Nitek W, Rams M, Sieklucka B (2012) Geometrical isomerism in pentadecanuclear high-spin Ni9W6 clusters with symmetrical bidentate ligands detected. CrystEngComm 14:6559–6564

    CAS  Google Scholar 

  22. Chorazy S, Rams M, Hoczek A, Czarnecki B, Sieklucka B, Ohkoshi S, Podgajny R (2016) Structural anisotropy of cyanido-bridged {CoII 9WV 6} single-molecule magnets induced by bidentate ligands: towards the rational enhancement of energy barrier. Chem Commun 52:4772–4775

    CAS  Google Scholar 

  23. Podgajny R, Nitek W, Rams M, Sieklucka B (2008) Testing the high spin MnII 9WV 6 cluster as building block for three-dimensional coordination networks. Cryst Growth Des 8:3817–3821

    CAS  Google Scholar 

  24. Podgajny R, Chorazy S, Nitek W, Rams M, Bałanda M, Sieklucka B (2010) {MnII 9WV 6}n nanowires organized into 3D hybrid network of I1O2 topology. Cryst Growth Des 10:4693–4696

    CAS  Google Scholar 

  25. Chorazy S, Podgajny R, Nitek W, Rams M, Ohkoshi S, Sieklucka B (2013) Supramolecular chains and coordination nanowires constructed of high-spin CoII 9WV 6 clusters and 4,4′-bpdo linkers. Cryst Growth Des 13:3036–3045

    CAS  Google Scholar 

  26. Sieklucka B, Szklarzewicz J, Kemp TJ, Errington W (2000) X-ray evidence of CN bridging in bimetallic complexes based on [M(CN)8]4− (M = Mo, W). The crystal structure of {[Mn(bpy)2]2(μ-NC)2[Mo(CN)6]2(μ-CN)2[Mn(bpy)2]2}·8H2O. Inorg Chem 39:5156–5158

    CAS  PubMed  Google Scholar 

  27. Mathonière C, Podgajny R, Guionneau P, Labrugere C, Sieklucka B (2005) Photomagnetism in cyano-bridged hexanuclear clusters [MnII(bpy)2]4[MIV(CN)8]2·xH2O (M = Mo, x = 14, and M = W, x = 9). Chem Mater 17:442–449

    Google Scholar 

  28. Venkatakrishnan TS, Rajamani R, Ramasesha S, Sutter JP (2007) Synthesis, crystal structure, and magnetic properties of hexanuclear [{MnL2}4{Nb(CN)8}2] and nonanuclear [{MnL2}6{Nb(CN)8}3] heterometallic clusters (L = bpy, phen). Inorg Chem 46:9569–9574

    CAS  PubMed  Google Scholar 

  29. Korzeniak T, Jankowski R, Kozieł M, Pinkowicz D, Sieklucka B (2017) Reversible single-crystal-to-single-crystal transformation in photomagnetic cyanido-bridged Cd4M2 octahedral molecules. Inorg Chem 56:12914–12919

    CAS  PubMed  Google Scholar 

  30. Chorazy S, Reczyński M, Podgajny R, Nogaś W, Buda S, Rams M, Nitek W, Nowicka B, Mlynarski J, Ohkoshi S, Sieklucka B (2015) Implementation of chirality into high-spin ferromagnetic CoII 9WV 6 and NiII 9WV 6 cyanido-bridged clusters. Cryst Growth Des 15:3573–3581

    CAS  Google Scholar 

  31. Chorazy S, Stanek JJ, Kobylarczyk J, Ohkoshi S, Sieklucka B, Podgajny R (2017) Modulation of the FeII spin crossover effect in the pentadecanuclear {Fe9[M(CN)8]6} (M = Re, W) clusters by facial coordination of tridentate polyamine ligands. Dalton Trans 46:8027–8036

    CAS  PubMed  Google Scholar 

  32. Ozaki N, Yamada R, nakabayashi K, Ohkoshi S (2011) Catena-poly[[[tetrakis(cyanido-kC)-tungstate(IV)]-di-m-cyanido-k4C:N-bis-[diaqua(2,2′-bipyridyl-k2N,N’)-manganese(II)]-di-m-cyanido-k4N:C]hexahydrate]. Acta Cryst E67:m702–m703

    Google Scholar 

  33. Podgajny R, Pełka R, Desplanches C, Ducase L, Nitek W, Korzeniak T, Stefańczyk O, Rams M, Sieklucka B, Verdaguer M (2011) W-knotted chain {[CuII(dien)]4[WV(CN)8]}5+ : synthesis, crystal structure, magnetism, and theory. Inorg Chem 2011:3213

    Google Scholar 

  34. Venkatakrishnan TS, Sahoo S, Brefuel N, Duhayon C, Paulsen C, Barra AL, Ramasesha S, Sutter JP (2010) Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{FeIIL}2{NbIV(CN)8}] helical chain compound designed with heptacoordinate FeII. J Am Chem Soc 132:6047–6056

    CAS  PubMed  Google Scholar 

  35. Nowicka B, Rams M, Stadnicka K, Sieklucka B (2007) Reversible guest-induced magnetic and structural single-crystal-to-single-crystal transformation in microporous coordination network {[Ni(cyclam)]3[W(CN)8]2}n. Inorg Chem 46:8123–8125

    CAS  PubMed  Google Scholar 

  36. Nowicka B, Bałanda M, Gaweł B, Ćwiak G, Budziak A, Łasocha W, Sieklucka B (2011) Microporous {[Ni(cyclam)]3[W(CN)8]2}n affording reversible structural and magnetic conversions. Dalton Trans 40:3067–3073

    CAS  PubMed  Google Scholar 

  37. Lim JH, You YS, Yoo HS, Yoon JH, Kim JI, Koh EK, Hong CS (2007) Bimetallic MV 2CuII 3 (M = Mo, W) coordination complexes based on octacyanometalates: structures and magnetic variations tuned by chelated tetradentate macrocyclic ligands. Inorg Chem 46:10578–10586

    CAS  PubMed  Google Scholar 

  38. Long J, Chamoreau LM, Mathoniere C, Marvaud V (2009) Photoswitchable heterotrimetallic chain based on octacyanomolybdate, copper, and nickel: synthesis, characterization, and photomagnetic properties. Inorg Chem 48:22–24

    CAS  PubMed  Google Scholar 

  39. Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2002) Crystal structure and magnetic properties of two-dimensional cyanide-bridged bimetallic assembly composed of CsI[MnII(3-cyanopyridine)2{WV(CN)8}]·H2O. Chem Lett 31:832–833

    Google Scholar 

  40. Podgajny R, Korzeniak T, Bałanda M, Wasiutyński T, Errington W, Kemp TJ, Alcock NW, Sieklucka B (2002) 2-D soft ferromagnet based on [WV(CN)8]3− and CuII with a Tc of 34 K. Chem Commun 2:1138–1139

    Google Scholar 

  41. Korzeniak T, Podgajny R, Alcock NW, Lewiński K, Bałanda M, Wasiutyński T, Sieklucka B (2003) A new family of magnetic 2D coordination polymers based on [MV(CN)8] (M = Mo, W) and pre-programmed Cu2+ centres. Polyhedron 22:2183–2190

    CAS  Google Scholar 

  42. Sieklucka B, Korzeniak T, Podgajny R, Bałanda M, Nakazawa Y, Miyazaki Y, Sorai M, Wasiutyński T (2004) Ferromagnetic ordering in new layered copper octacyanometallates. J Magn Magn Mater 272–276:1058–1059

    Google Scholar 

  43. Sieklucka B, Podgajny R, Przychodzeń P, Korzeniak T (2005) Engineering of octacyanometalate-based coordination networks towards functionality. Coord Chem Rev 249:2203–2221

    CAS  Google Scholar 

  44. Przychodzeń P, Korzeniak T, Podgajny R, Sieklucka B (2006) Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord Chem Rev 250:2234–2260

    Google Scholar 

  45. Nowicka B, Korzeniak T, Stefańczyk O, Pinkowicz D, Chorąży S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971

    CAS  Google Scholar 

  46. Hatlevik Ø, Buschmann WE, Zhang J, Manson JL, Miller JS (1999) Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate(III) magnet to 99°C (372 K). Adv Mater 11:914–918

    CAS  Google Scholar 

  47. Imoto K, Takemura M, Tokoro H, Ohkoshi S (2012) A cyano-bridged vanadium-niobium bimetal assembly exhibiting a high curie temperature of 210 K. Eur J Inorg Chem 16:2649–2652

    Google Scholar 

  48. Pinkowicz D, Pełka R, Drath O, Nitek W, Bałanda M, Majcher AM, Ponetti G, Sieklucka B (2010) Nature of magnetic interactions in 3D {[MII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (M = Mn, Fe, Co, Ni) molecular magnets. Inorg Chem 49:7565–7576

    CAS  PubMed  Google Scholar 

  49. Ohkoshi S, Hashimoto K (2001) Photo-magnetic and magneto-optical effects of functionalized metal polycyanides. J Photochem Photobiol C 2:71–88

    CAS  Google Scholar 

  50. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem Phys Lett 105:1–4

    CAS  Google Scholar 

  51. Carvajal MA, Reguero M, de Graaf C (2010) On the mechanism of the photoinduced magnetism in copper octacyanomolybdates. Chem Commun 46:5737–5739

    CAS  Google Scholar 

  52. Carvajal MA, Caballol R, de Graaf C (2011) Insights on the photomagnetism in copper octacyanomolybdates. Dalton Trans 40:7295–7303

    CAS  PubMed  Google Scholar 

  53. Bunău O, Arrio MA, Sainctavit P, Paulatto L, Calandra M, Juhin A, Marvaud V, Cartier dit Moulin C (2012) Understanding the Photomagnetic behavior in copper octacyanomolybdates. J Phys Chem A 116:8678–8683

    PubMed  Google Scholar 

  54. Bridonneau N, Long J, Cantin JL, von Bardeleben J, Pillet S, Bendeif EE, Aravena D, Ruiz E, Marvaud V (2015) First evidence of light-induced spin transition in molybdenum(IV). Chem Commun 51:8229

    CAS  Google Scholar 

  55. Magott M, Stefańczyk O, Sieklucka B, Pinkowicz D (2017) Octacyanidotungstate(IV) coordination chains demonstrate a light-induced excited spin state trapping behavior and magnetic exchange photoswitching. Angew Chem Int Ed 56:13283–13287

    CAS  Google Scholar 

  56. Arczyński M, Rams M, Stanek J, Fitta M, Sieklucka B, Dunbar KR, Pinkowicz D (2017) A family of octahedral magnetic molecules based on [NbIV(CN)8]4−. Inorg Chem 56:4021–4027

    PubMed  Google Scholar 

  57. Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2003) Photoinduced magnetization in a two-dimensional cobalt octacyanotungstate. J Am Chem Soc 125:9240–9241

    CAS  PubMed  Google Scholar 

  58. Korzeniak T, Pinkowicz D, Nitek W, Dańko T, Pełka R, Sieklucka B (2016) Photoswitchable CuII 4MoIV and CuII 2MoIV cyanido-bridged molecules. Dalton Trans 45:16585–16595

    CAS  PubMed  Google Scholar 

  59. Stefańczyk O, Majcher AM, Rams M, Nitek W, Mathoniere C, Sieklucka B (2015) Photo-induced magnetic properties of the [CuII(bapa)]2[MoIV(CN)8]·7H2O molecular ribbon. J Mater Chem C 3:8712–8719

    Google Scholar 

  60. Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathoniere C (2004) Reversible photoinduced magnetic properties in the heptanuclear complex [MoIV(CN)2(CN-CuL)6]8+: a photomagnetic high-spin molecule. Angew Chem Int Ed 43:5468–5471

    CAS  Google Scholar 

  61. Chorazy S, Wyczesany M, Sieklucka B (2017) Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules 22:1902

    PubMed Central  Google Scholar 

  62. Long J, Chelebaeva E, Larionova J, Guari Y, Ferreira RAS, Carlos LD, Almeida Paz FA, Trifonov A, Guérin C (2011) Near-infrared luminescent and magnetic cyano-bridged coordination polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorg Chem 50:9924–9926

    CAS  PubMed  Google Scholar 

  63. Chorazy S, Rams M, Wang J, Sieklucka B, Ohkoshi S (2017) Octahedral Yb(III) complexes embedded in [CoIII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Trans 46:13668–13672

    CAS  PubMed  Google Scholar 

  64. Chorazy S, Rams M, Nakabayashi K, Sieklucka B, Ohkoshi S (2016) White light emissive Dy III single-molecule magnets sensitized by diamagnetic [CoIII(CN)6]3− linkers. Chem Eur J 22:7371–7375

    CAS  Google Scholar 

  65. Chorazy S, Sieklucka B, Ohkoshi S (2016) Near-infrared photoluminescence in hexacyanido-bridged Nd−Cr layered ferromagnet. Cryst Growth Des 16:4918–4925

    CAS  Google Scholar 

  66. Chorazy S, Kumar K, Nakabayashi K, Sieklucka B, Ohkoshi S (2017) Fine tuning of multicolored photoluminescence in crystalline magnetic materials constructed of trimetallic EuxTb1−x[co(CN)6] cyanido-bridged chains. Inorg Chem 56:5239–5252

    CAS  PubMed  Google Scholar 

  67. Chorazy S, Nakabayashi K, Arczynski M, Pełka R, Ohkoshi S, Sieklucka B (2014) Multifunctionality in bimetallic LnIII[WV(CN)8]3− (Ln=Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling. Chem Eur J 20:7144–7159

    CAS  PubMed  Google Scholar 

  68. Chorazy S, Nakabayashi K, Ozaki N, Pełka R, Fic T, Mlynarski J, Sieklucka B (2013) Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII–WV coordination helices. RSC Adv 3:1065–1068

    CAS  Google Scholar 

  69. Pinkowicz D, Podgajny R, Nitek W, Rams M, Majcher AM, Nuida T, Ohkoshi S, Sieklucka B (2011) Multifunctional magnetic molecular {[MnII(urea)2(H2O)]2[NbIV(CN)8]}n system: magnetization-induced SHG in the chiral polymorph. Chem Mater 23:21–31

    CAS  Google Scholar 

  70. Kosaka W, Hashimoto K, Ohkoshi S (2007) Three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. Bull Chem Soc Jpn 81:992–994

    Google Scholar 

  71. Tsunobuchi Y, Kosaka W, Nuida T, Ohkoshi S (2009) Magnetization-induced second harmonic generation in a three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. CrystEngComm 11:2051–2053

    CAS  Google Scholar 

  72. Kosaka W, Nuida T, Hashimoto K, Ohkoshi S (2007) Crystal structure, magnetic properties, and second harmonic generation of a three-dimensional pyroelectric cyano-bridged Mn–Mo complex. Bull Chem Soc Jpn 80:960–962

    CAS  Google Scholar 

  73. Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40:3249–3265

    CAS  PubMed  Google Scholar 

  74. Kahn O, Larionova J, Yakhmi JV (1999) Molecular magnetic sponges. Chem Eur J 5:3443–3449

    CAS  Google Scholar 

  75. Kaneko W, Ohba M, Kitagawa S (2007) A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J Am Chen Soc 129:13706–13712

    CAS  Google Scholar 

  76. Pinkowicz D, Podgajny R et al (2008) Magnetic sponge-like behavior of 3D ferrimagnetic {[MnII(imH)]2[NbIV(CN)8]}n with Tc = 62 K. Inorg Chem 47:9745–9747

    CAS  PubMed  Google Scholar 

  77. Pinkowicz D, Podgajny R et al (2011) Double switching of a magnetic coordination framework through intraskeletal molecular rearrangement. Angew Chem Int Ed 50:3973–3977

    CAS  Google Scholar 

  78. Milon J, Daniel MC, Kaiba A, Guionneau P, Brandes S, Sutter JP (2007) Nanoporous magnets of chiral and racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with switchable ordering temperatures (TC = 85 K ↔ 106 K) driven by H2O sorption (L = N,N-dimethylalaninol). J Am Chem Soc 129:13872–13878

    CAS  PubMed  Google Scholar 

  79. Zhang YJ, Liu T, Kanegawa S, Sato O (2009) Reversible single-crystal-to-single-crystal transformation from achiral antiferromagnetic hexanuclears to a chiral ferrimagnetic double zigzag chain. J Am Chem Soc 131:7942–7943

    CAS  PubMed  Google Scholar 

  80. Ohkoshi S, Tsunobuchi Y, Takahashi H, Hozumi T, Shiro M, Hashimoto K (2007) Synthesis and alcohol vapor sensitivity of a ferromagnetic copper−tungsten bimetallic assembly. J Am Chem Soc 129:3084–3085

    CAS  PubMed  Google Scholar 

  81. Wang QL, Southerland H, Li JR, Prosvirin AV, Zhao H, Dunbar KR (2012) Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature. Angew Chem Int Ed 51:9321–9324

    CAS  Google Scholar 

  82. Yanai N, Kaneko W, Yoneda K, Ohba M, Kitagawa S (2007) Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet. J Am Chem Soc 129:3496–3497

    CAS  PubMed  Google Scholar 

  83. Nowicka B, Reczyński M, Rams M, Nitek W, Kozieł M, Sieklucka B (2015) Larger pores and higher Tc: {[Ni(cyclam)]3[W(CN)8]2·solv}n – a new member of the largest family of pseudo-polymorphic isomers among octacyanometallate-based assemblies. CrystEngComm 17:3526–3532

    CAS  Google Scholar 

  84. Nowicka B, Reczyński M, Bałanda M, Fitta M, Gaweł B, Sieklucka B (2016) The rule rather than the exception: structural flexibility of [Ni(cyclam)]2+-based cyano-bridged magnetic networks. Cryst Growth Des 16:4736–4743

    CAS  Google Scholar 

  85. Chorazy S, Podgajny R et al (2015) Optical activity and dehydration-driven switching of magnetic properties in enantiopure cyanido-bridged CoII 3WV 2 trigonal bipyramids. Inorg Chem 54:5784–5794

    CAS  PubMed  Google Scholar 

  86. Nowicka B, Heczko M, Reczyński M, Rams M, Nitek W, Gaweł B, Sieklucka B (2016) Exploration of a new building block for the construction of cyano-bridged solvatomagnetic assemblies: [N(cyclam)]3+. CrystEngComm 18:7011–7020

    CAS  Google Scholar 

  87. Herchel R, Tuček J, Trávníček Z, Petridis D, Zbořil R (2011) Crystal water molecules as magnetic tuners in molecular metamagnets exhibiting antiferro-ferro-paramagnetic transitions. Inorg Chem 50:9153–9163

    CAS  PubMed  Google Scholar 

  88. Maspoch D et al (2007) Structural and magnetic modulation of a purely organic open framework by selective guest inclusion. Chem Eur J 13:8153–8163

    CAS  PubMed  Google Scholar 

  89. Ohba M, Maruono N, Okawa H, Enoki T, Latour JM (1994) A new bimetallic ferromagnet, [Ni(en)2]3[Fe(CN)6]2∙2H2O, with a rare rope-ladder chain structure. J Am Chem Soc 116:11566–11567

    CAS  Google Scholar 

  90. Ferlay S, Mallah T, Vaissermann J, Bartolome F, Veillet P, Verdaguer M (1996) A chromium(III) nickel(II) cyanide-bridged ferromagnetic layered structure with corrugated sheets. Chem Commun 1996:2481–2482

    Google Scholar 

  91. Colacio E, Dominguez-Vera JM, Ghazi M, Kivekas R, Lloret F, Morenoa JM, Stoeckli-Evans H (1999) A novel two-dimensional honeycomb-like bimetallic iron(III)–nickel(II) cyanide-bridged magnetic material [Ni(cyclam)]3[Fe(CN)6]2·nH2O (cyclam = 1,4,8,11-tetraazacyclodecane). Chem Commun 1999:987–988

    Google Scholar 

  92. Marvaud V, Decroix C, Scuiller A, Guyard-Duhayon C, Vaissermann J, Gonnet F, Verdaguer M (2003) Hexacyanometalate molecular chemistry: heptanuclear heterobimetallic complexes; control of the ground spin state. Chem Eur J 8:1677–1691

    Google Scholar 

  93. Tuyèras F, Scuiller A, Duhayon C, Hernandez-Molina M, Fabrizi de Biani F, Verdaguer M, Mallah T, Wernsdorfer W, Marvaud V (2008) Hexacyanidometalate molecular chemistry, part III: di-, tri-, tetra-, hexa- and hepta-nuclear chromium–nickel complexes: control of spin, structural anisotropy, intra- and inter-molecular exchange couplings. Inorg Chim Acta 361:3505–3518

    Google Scholar 

  94. Gu ZZ, Einaga Y, Sato O, Fujishima A, Hashimoto K (2001) Photo- and dehydration-induced charge transfer processes accompanied with spin transition on CoFe(CN)5NH3∙ 6H2O. J Solid State Chem 159:336–342

    CAS  Google Scholar 

  95. Liu M, Bian XF, Xia YF, Bao Z, Wu HS, Xu MX (2011) Variation of magnetic properties with different annealed temperatures in the Ni3[Fe(CN)6]2∙XH2O. Curr Appl Phys 11:271–275

    Google Scholar 

  96. Nowicka B, Reczyński M, Rams M, Nitek W, Żukrowski J, Kapusta C, Sieklucka B (2015) Hydration-switchable charge transfer in the first bimetallic assembly based on the [Ni(cyclam)]3+ − magnetic CN-bridged chain {(H3O)[NiIII(cyclam)] [FeII(CN)6]·5H2O}n. Chem Commun 51:11485–11488

    CAS  Google Scholar 

  97. Ohba M et al (2009) Bidirectional chemo-switching of spin state in a microporous framework. Angew Chem Int Ed 48:4767–4771

    CAS  Google Scholar 

  98. Bartual-Murgui C et al (2012) Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chem Eur J 18:507–516

    CAS  PubMed  Google Scholar 

  99. Berlinguette CP, Dragulescu-Andrasi A, Sieber A, Güdel HU, Achim C, Dunbar KR (2005) A charge-transfer-induced spin transition in a discrete complex: the role of extrinsic factors in stabilizing three electronic isomeric forms of a cyanide-bridged co/Fe cluster. J Am Chem Soc 127:6766–6779

    CAS  PubMed  Google Scholar 

  100. Ozaki N, Tokoro H, Miyamotoa Y, Ohkoshi S (2014) Humidity dependency of the thermal phase transition of a cyano bridged Co–W bimetal assembly. New J Chem 38:1950–1954

    CAS  Google Scholar 

  101. Koumousi ES et al (2014) Metal-to-metal electron transfer in co/Fe Prussian blue molecular analogues: the ultimate miniaturization. J Am Chem Soc 136:15461–15464

    CAS  PubMed  Google Scholar 

  102. Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc Chem Res 46:2376–2384

    CAS  PubMed  Google Scholar 

  103. Imoto K, Nakagawa K, Miyahara H, Ohkoshi S (2013) Super-ionic conductive magnet based on a cyano-bridged Mn−Nb bimetal assembly. Cryst Growth Des 13:4673–4677

    CAS  Google Scholar 

  104. Okubo M (2013) Reversible solid state redox of an octacyanometallate-bridged coordination polymer by electrochemical ion insertion/extraction. Inorg Chem 52:3772–3779

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Sieklucka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzeniak, T., Nowicka, B., Sieklucka, B. (2018). Hybrid Organic–Inorganic Cyanide-Bridged Networks. In: Chandrasekhar, V., Pointillart, F. (eds) Organometallic Magnets . Topics in Organometallic Chemistry, vol 64. Springer, Cham. https://doi.org/10.1007/3418_2018_2

Download citation

Publish with us

Policies and ethics