pp 1-34 | Cite as

Hybrid Organic–Inorganic Cyanide-Bridged Networks

  • Tomasz Korzeniak
  • Beata Nowicka
  • Barbara Sieklucka
Part of the Topics in Organometallic Chemistry book series


Hybrid organic–inorganic CN-bridged networks are an important and versatile group of molecular magnets. Cyanide ligands mediate relatively strong magnetic interactions and at the same time allow easy design of polynuclear assemblies via building block approach. Introduction of organic ligands allows effective manipulation of topology and dimensionality, enabling formation of discrete polynuclear structures, chains and layers as well as intricate 3D architectures. Organic molecules in hybrid systems can act as blocking or bridging ligands as well as guest molecules. Most importantly, apart from directing the structure formation, organic ligands can be used to induce additional desired properties. In this chapter, we present numerous examples of hybrid CN-bridged assemblies to illustrate their diverse functionalities. They include single molecule (SMMs) and single chain magnets (SCMs), magnetic sponges, multi-switchable spin-crossover (SCO) and charge-transfer systems as well as materials combining magnetic ordering with optical activity or luminescence. Current efforts in the research of CN-bridged systems concentrate on several topics connected with their potential applications, like search for materials with high critical temperature of magnetic ordering, development of bistable systems responsive to multiple stimuli, or surface deposition and formation of heterostructures.


Cyanide ligand Luminescence Multifunctionality Photomagnetism Solvatomagnetism Spin crossover 


  1. 1.
    Verdaguer M, Bleuzen A, Marvaud V et al (1999) Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord Chem Rev 190–192:1023–1047CrossRefGoogle Scholar
  2. 2.
    Robin MB (1962) The color and electronic configurations of Prussian blue. Inorg Chem 1:337–342CrossRefGoogle Scholar
  3. 3.
    Ito A, Suenaga M, Ono K (1968) Mossbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J Chem Phys 48:3597–3599ADSCrossRefGoogle Scholar
  4. 4.
    Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703ADSCrossRefGoogle Scholar
  5. 5.
    Holmes SM, Girolami GS (1999) Sol-gel synthesis of KVII[CrIII(CN)6]∙2H2O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C. J Am Chem Soc 121:5593–5594CrossRefGoogle Scholar
  6. 6.
    Newton GN, Nihei M, Oshio H (2011) Cyanide-bridged molecular squares – the building units of Prussian blue. Eur J Inorg Chem 2011:3031–3042CrossRefGoogle Scholar
  7. 7.
    Korzeniak T, Stadnicka K, Rams M, Sieklucka B (2004) Grid-type two-dimensional magnetic multinuclear metal complex: strands of {[CuII(μ-4,4′-bpy)]2+}n cross-linked by Octacyanotungstate(V) ions. Inorg Chem 43:4811–4813CrossRefPubMedGoogle Scholar
  8. 8.
    Larionova J, Gross M, Pilkington M, Andres H, Stoeckli-Evans H, Güdel HU, Decurtins S (2000) High-spin molecules: a novel Cyano-bridged MnII9MoV6 molecular cluster with a S = 51/2 ground state and ferromagnetic intercluster ordering at low temperatures. Angew Chem Int Ed 39:1605–1609CrossRefGoogle Scholar
  9. 9.
    Zhong ZJ, Seino H, Mizobe Y, Hidai M, Fujishima A, Ohkoshi S, Hashimoto K (2000) A high-spin cyanide-bridged Mn9W6 cluster (S = 39/2) with a full-capped cubane structure. J Am Chem Soc 122:2952–2953CrossRefGoogle Scholar
  10. 10.
    Bonadio F, Gross M, Stoeckli-Evans H, Decurtins S (2002) High-spin molecules: synthesis, X-ray characterization, and magnetic behavior of two new cyano-bridged NiII9MoV6 and NiII9WV6 clusters with a S = 12 ground state. Inorg Chem 41:5891–5896CrossRefPubMedGoogle Scholar
  11. 11.
    Song Y, Zhang P, Ren X-M, Shen X-F, Li Y-Z, You X-Z (2005) Octacyanometallate-based single-molecule magnets: CoII9MV6 (M = W, Mo). J Am Chem Soc 127:3708–3709CrossRefPubMedGoogle Scholar
  12. 12.
    Freedman DE, Bennett MV, Long JR (2006) Symmetry-breaking substitutions of [Re(CN)8]3− into the centered, face-capped octahedral clusters (CH3OH)24M9M′6(CN)48 (M = Mn, Co; M′ = Mo, W). Dalton Trans:2829–2834Google Scholar
  13. 13.
    Ma SL, Ren S, Ma Y, Liao DZ, Yan SP (2009) A high-spin cyanide-bridged Mo6Mn9 cluster: crystal structure and magnetism. Struct Chem 20:161–167CrossRefGoogle Scholar
  14. 14.
    Podgajny R, Chorazy S, Nitek W, Rams M, Majcher AM, Marszałek B, Żukrowski J, Kapusta C, Sieklucka B (2013) Co–NC–W and Fe–NC–W electron-transfer channels for thermal bistability in trimetallic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster. Angew Chem Int Ed 52:896–900CrossRefGoogle Scholar
  15. 15.
    Chorazy S, Podgajny R, Nogaś W, Nitek W, Kozieł M, Rams M, Juszyńska-Gałązka E, Żukrowski J, Kapusta C, Nakabayashi K, Fujimoto T, Ohkoshi S (2014) Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. Chem Commun 50:3484–3487CrossRefGoogle Scholar
  16. 16.
    Chorazy S, Stanek JJ, Nogaś W, Majcher AM, Rams M, Kozieł M, Juszyńska-Gałązka E, Nakabayashi K, Ohkoshi S, Sieklucka B, Podgajny R (2016) Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution. J Am Chem Soc 138:1635–1646CrossRefPubMedGoogle Scholar
  17. 17.
    Lim JH, Yoo JH, Kim HC, Hong CS (2006) Surface modification of a six-capped body-centered cube Ni9W6 cluster: structure and single-molecule magnetism. Angew Chem Int Ed 45:7424–7426CrossRefGoogle Scholar
  18. 18.
    Lim JH, Yoo HS, Kim JI, Yoon JH, Yang N, Koh EK, Park J-G, Hong CS (2008) A facially capped body-centered Ni9W6 cubane modified with sulfur-containing bidentate ligands: structure and magnetic properties. Eur J Inorg Chem:3428–3431Google Scholar
  19. 19.
    Lim JH, Yoo HS, Yoon JH, Koh EK, Kim HC, Hong CS (2008) Structure and magnetic properties of cyanide-bridged NiII9MoV6 cluster modified by bidentate capping ligands. Polyhedron 27:299–303CrossRefGoogle Scholar
  20. 20.
    Hilfiger MG, Zhao H, Prosvirin A, Wernsdorfer W, Dunbar KM (2009) Molecules based on M(V) (M = Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[m-CN]30[WV(CN)3]6}. Dalton Trans:5155–5163Google Scholar
  21. 21.
    Nowicka B, Stadnicka K, Nitek W, Rams M, Sieklucka B (2012) Geometrical isomerism in pentadecanuclear high-spin Ni9W6 clusters with symmetrical bidentate ligands detected. CrystEngComm 14:6559–6564CrossRefGoogle Scholar
  22. 22.
    Chorazy S, Rams M, Hoczek A, Czarnecki B, Sieklucka B, Ohkoshi S, Podgajny R (2016) Structural anisotropy of cyanido-bridged {CoII9WV6} single-molecule magnets induced by bidentate ligands: towards the rational enhancement of energy barrier. Chem Commun 52:4772–4775CrossRefGoogle Scholar
  23. 23.
    Podgajny R, Nitek W, Rams M, Sieklucka B (2008) Testing the high spin MnII9WV6 cluster as building block for three-dimensional coordination networks. Cryst Growth Des 8:3817–3821CrossRefGoogle Scholar
  24. 24.
    Podgajny R, Chorazy S, Nitek W, Rams M, Bałanda M, Sieklucka B (2010) {MnII9WV6}n nanowires organized into 3D hybrid network of I1O2 topology. Cryst Growth Des 10:4693–4696CrossRefGoogle Scholar
  25. 25.
    Chorazy S, Podgajny R, Nitek W, Rams M, Ohkoshi S, Sieklucka B (2013) Supramolecular chains and coordination nanowires constructed of high-spin CoII9WV6 clusters and 4,4′-bpdo linkers. Cryst Growth Des 13:3036–3045CrossRefGoogle Scholar
  26. 26.
    Sieklucka B, Szklarzewicz J, Kemp TJ, Errington W (2000) X-ray evidence of CN bridging in bimetallic complexes based on [M(CN)8]4− (M = Mo, W). The crystal structure of {[Mn(bpy)2]2(μ-NC)2[Mo(CN)6]2(μ-CN)2[Mn(bpy)2]2}·8H2O. Inorg Chem 39:5156–5158CrossRefPubMedGoogle Scholar
  27. 27.
    Mathonière C, Podgajny R, Guionneau P, Labrugere C, Sieklucka B (2005) Photomagnetism in cyano-bridged hexanuclear clusters [MnII(bpy)2]4[MIV(CN)8]2·xH2O (M = Mo, x = 14, and M = W, x = 9). Chem Mater 17:442–449CrossRefGoogle Scholar
  28. 28.
    Venkatakrishnan TS, Rajamani R, Ramasesha S, Sutter JP (2007) Synthesis, crystal structure, and magnetic properties of hexanuclear [{MnL2}4{Nb(CN)8}2] and nonanuclear [{MnL2}6{Nb(CN)8}3] heterometallic clusters (L = bpy, phen). Inorg Chem 46:9569–9574CrossRefPubMedGoogle Scholar
  29. 29.
    Korzeniak T, Jankowski R, Kozieł M, Pinkowicz D, Sieklucka B (2017) Reversible single-crystal-to-single-crystal transformation in photomagnetic cyanido-bridged Cd4M2 octahedral molecules. Inorg Chem 56:12914–12919CrossRefPubMedGoogle Scholar
  30. 30.
    Chorazy S, Reczyński M, Podgajny R, Nogaś W, Buda S, Rams M, Nitek W, Nowicka B, Mlynarski J, Ohkoshi S, Sieklucka B (2015) Implementation of chirality into high-spin ferromagnetic CoII9WV6 and NiII9WV6 cyanido-bridged clusters. Cryst Growth Des 15:3573–3581CrossRefGoogle Scholar
  31. 31.
    Chorazy S, Stanek JJ, Kobylarczyk J, Ohkoshi S, Sieklucka B, Podgajny R (2017) Modulation of the FeII spin crossover effect in the pentadecanuclear {Fe9[M(CN)8]6} (M = Re, W) clusters by facial coordination of tridentate polyamine ligands. Dalton Trans 46:8027–8036CrossRefPubMedGoogle Scholar
  32. 32.
    Ozaki N, Yamada R, nakabayashi K, Ohkoshi S (2011) Catena-poly[[[tetrakis(cyanido-kC)-tungstate(IV)]-di-m-cyanido-k4C:N-bis-[diaqua(2,2′-bipyridyl-k2N,N’)-manganese(II)]-di-m-cyanido-k4N:C]hexahydrate]. Acta Cryst E67:m702–m703Google Scholar
  33. 33.
    Podgajny R, Pełka R, Desplanches C, Ducase L, Nitek W, Korzeniak T, Stefańczyk O, Rams M, Sieklucka B, Verdaguer M (2011) W-knotted chain {[CuII(dien)]4[WV(CN)8]}5+: synthesis, crystal structure, magnetism, and theory. Inorg Chem 2011:3213CrossRefGoogle Scholar
  34. 34.
    Venkatakrishnan TS, Sahoo S, Brefuel N, Duhayon C, Paulsen C, Barra AL, Ramasesha S, Sutter JP (2010) Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{FeIIL}2{NbIV(CN)8}] helical chain compound designed with heptacoordinate FeII. J Am Chem Soc 132:6047–6056CrossRefPubMedGoogle Scholar
  35. 35.
    Nowicka B, Rams M, Stadnicka K, Sieklucka B (2007) Reversible guest-induced magnetic and structural single-crystal-to-single-crystal transformation in microporous coordination network {[Ni(cyclam)]3[W(CN)8]2}n. Inorg Chem 46:8123–8125CrossRefPubMedGoogle Scholar
  36. 36.
    Nowicka B, Bałanda M, Gaweł B, Ćwiak G, Budziak A, Łasocha W, Sieklucka B (2011) Microporous {[Ni(cyclam)]3[W(CN)8]2}n affording reversible structural and magnetic conversions. Dalton Trans 40:3067–3073CrossRefPubMedGoogle Scholar
  37. 37.
    Lim JH, You YS, Yoo HS, Yoon JH, Kim JI, Koh EK, Hong CS (2007) Bimetallic MV2CuII3 (M = Mo, W) coordination complexes based on octacyanometalates: structures and magnetic variations tuned by chelated tetradentate macrocyclic ligands. Inorg Chem 46:10578–10586CrossRefPubMedGoogle Scholar
  38. 38.
    Long J, Chamoreau LM, Mathoniere C, Marvaud V (2009) Photoswitchable heterotrimetallic chain based on octacyanomolybdate, copper, and nickel: synthesis, characterization, and photomagnetic properties. Inorg Chem 48:22–24CrossRefPubMedGoogle Scholar
  39. 39.
    Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2002) Crystal structure and magnetic properties of two-dimensional cyanide-bridged bimetallic assembly composed of CsI[MnII(3-cyanopyridine)2{WV(CN)8}]·H2O. Chem Lett 31:832–833CrossRefGoogle Scholar
  40. 40.
    Podgajny R, Korzeniak T, Bałanda M, Wasiutyński T, Errington W, Kemp TJ, Alcock NW, Sieklucka B (2002) 2-D soft ferromagnet based on [WV(CN)8]3− and CuII with a Tc of 34 K. Chem Commun 2:1138–1139CrossRefGoogle Scholar
  41. 41.
    Korzeniak T, Podgajny R, Alcock NW, Lewiński K, Bałanda M, Wasiutyński T, Sieklucka B (2003) A new family of magnetic 2D coordination polymers based on [MV(CN)8] (M = Mo, W) and pre-programmed Cu2+ centres. Polyhedron 22:2183–2190CrossRefGoogle Scholar
  42. 42.
    Sieklucka B, Korzeniak T, Podgajny R, Bałanda M, Nakazawa Y, Miyazaki Y, Sorai M, Wasiutyński T (2004) Ferromagnetic ordering in new layered copper octacyanometallates. J Magn Magn Mater 272–276:1058–1059CrossRefGoogle Scholar
  43. 43.
    Sieklucka B, Podgajny R, Przychodzeń P, Korzeniak T (2005) Engineering of octacyanometalate-based coordination networks towards functionality. Coord Chem Rev 249:2203–2221CrossRefGoogle Scholar
  44. 44.
    Przychodzeń P, Korzeniak T, Podgajny R, Sieklucka B (2006) Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord Chem Rev 250:2234–2260CrossRefGoogle Scholar
  45. 45.
    Nowicka B, Korzeniak T, Stefańczyk O, Pinkowicz D, Chorąży S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971CrossRefGoogle Scholar
  46. 46.
    Hatlevik Ø, Buschmann WE, Zhang J, Manson JL, Miller JS (1999) Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate(III) magnet to 99°C (372 K). Adv Mater 11:914–918CrossRefGoogle Scholar
  47. 47.
    Imoto K, Takemura M, Tokoro H, Ohkoshi S (2012) A cyano-bridged vanadium-niobium bimetal assembly exhibiting a high curie temperature of 210 K. Eur J Inorg Chem 16:2649–2652CrossRefGoogle Scholar
  48. 48.
    Pinkowicz D, Pełka R, Drath O, Nitek W, Bałanda M, Majcher AM, Ponetti G, Sieklucka B (2010) Nature of magnetic interactions in 3D {[MII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (M = Mn, Fe, Co, Ni) molecular magnets. Inorg Chem 49:7565–7576CrossRefPubMedGoogle Scholar
  49. 49.
    Ohkoshi S, Hashimoto K (2001) Photo-magnetic and magneto-optical effects of functionalized metal polycyanides. J Photochem Photobiol C 2:71–88CrossRefGoogle Scholar
  50. 50.
    Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem Phys Lett 105:1–4ADSCrossRefGoogle Scholar
  51. 51.
    Carvajal MA, Reguero M, de Graaf C (2010) On the mechanism of the photoinduced magnetism in copper octacyanomolybdates. Chem Commun 46:5737–5739CrossRefGoogle Scholar
  52. 52.
    Carvajal MA, Caballol R, de Graaf C (2011) Insights on the photomagnetism in copper octacyanomolybdates. Dalton Trans 40:7295–7303CrossRefPubMedGoogle Scholar
  53. 53.
    Bunău O, Arrio MA, Sainctavit P, Paulatto L, Calandra M, Juhin A, Marvaud V, Cartier dit Moulin C (2012) Understanding the Photomagnetic behavior in copper octacyanomolybdates. J Phys Chem A 116:8678–8683CrossRefPubMedGoogle Scholar
  54. 54.
    Bridonneau N, Long J, Cantin JL, von Bardeleben J, Pillet S, Bendeif EE, Aravena D, Ruiz E, Marvaud V (2015) First evidence of light-induced spin transition in molybdenum(IV). Chem Commun 51:8229CrossRefGoogle Scholar
  55. 55.
    Magott M, Stefańczyk O, Sieklucka B, Pinkowicz D (2017) Octacyanidotungstate(IV) coordination chains demonstrate a light-induced excited spin state trapping behavior and magnetic exchange photoswitching. Angew Chem Int Ed 56:13283–13287CrossRefGoogle Scholar
  56. 56.
    Arczyński M, Rams M, Stanek J, Fitta M, Sieklucka B, Dunbar KR, Pinkowicz D (2017) A family of octahedral magnetic molecules based on [NbIV(CN)8]4−. Inorg Chem 56:4021–4027CrossRefPubMedGoogle Scholar
  57. 57.
    Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2003) Photoinduced magnetization in a two-dimensional cobalt octacyanotungstate. J Am Chem Soc 125:9240–9241CrossRefPubMedGoogle Scholar
  58. 58.
    Korzeniak T, Pinkowicz D, Nitek W, Dańko T, Pełka R, Sieklucka B (2016) Photoswitchable CuII4MoIV and CuII2MoIV cyanido-bridged molecules. Dalton Trans 45:16585–16595CrossRefPubMedGoogle Scholar
  59. 59.
    Stefańczyk O, Majcher AM, Rams M, Nitek W, Mathoniere C, Sieklucka B (2015) Photo-induced magnetic properties of the [CuII(bapa)]2[MoIV(CN)8]·7H2O molecular ribbon. J Mater Chem C 3:8712–8719CrossRefGoogle Scholar
  60. 60.
    Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathoniere C (2004) Reversible photoinduced magnetic properties in the heptanuclear complex [MoIV(CN)2(CN-CuL)6]8+: a photomagnetic high-spin molecule. Angew Chem Int Ed 43:5468–5471CrossRefGoogle Scholar
  61. 61.
    Chorazy S, Wyczesany M, Sieklucka B (2017) Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules 22:1902CrossRefGoogle Scholar
  62. 62.
    Long J, Chelebaeva E, Larionova J, Guari Y, Ferreira RAS, Carlos LD, Almeida Paz FA, Trifonov A, Guérin C (2011) Near-infrared luminescent and magnetic cyano-bridged coordination polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorg Chem 50:9924–9926CrossRefPubMedGoogle Scholar
  63. 63.
    Chorazy S, Rams M, Wang J, Sieklucka B, Ohkoshi S (2017) Octahedral Yb(III) complexes embedded in [CoIII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Trans 46:13668–13672CrossRefPubMedGoogle Scholar
  64. 64.
    Chorazy S, Rams M, Nakabayashi K, Sieklucka B, Ohkoshi S (2016) White light emissive Dy III single-molecule magnets sensitized by diamagnetic [CoIII(CN)6]3− linkers. Chem Eur J 22:7371–7375CrossRefPubMedGoogle Scholar
  65. 65.
    Chorazy S, Sieklucka B, Ohkoshi S (2016) Near-infrared photoluminescence in hexacyanido-bridged Nd−Cr layered ferromagnet. Cryst Growth Des 16:4918–4925CrossRefGoogle Scholar
  66. 66.
    Chorazy S, Kumar K, Nakabayashi K, Sieklucka B, Ohkoshi S (2017) Fine tuning of multicolored photoluminescence in crystalline magnetic materials constructed of trimetallic EuxTb1−x[co(CN)6] cyanido-bridged chains. Inorg Chem 56:5239–5252CrossRefPubMedGoogle Scholar
  67. 67.
    Chorazy S, Nakabayashi K, Arczynski M, Pełka R, Ohkoshi S, Sieklucka B (2014) Multifunctionality in bimetallic LnIII[WV(CN)8]3− (Ln=Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling. Chem Eur J 20:7144–7159CrossRefPubMedGoogle Scholar
  68. 68.
    Chorazy S, Nakabayashi K, Ozaki N, Pełka R, Fic T, Mlynarski J, Sieklucka B (2013) Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII–WV coordination helices. RSC Adv 3:1065–1068CrossRefGoogle Scholar
  69. 69.
    Pinkowicz D, Podgajny R, Nitek W, Rams M, Majcher AM, Nuida T, Ohkoshi S, Sieklucka B (2011) Multifunctional magnetic molecular {[MnII(urea)2(H2O)]2[NbIV(CN)8]}n system: magnetization-induced SHG in the chiral polymorph. Chem Mater 23:21–31CrossRefGoogle Scholar
  70. 70.
    Kosaka W, Hashimoto K, Ohkoshi S (2007) Three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. Bull Chem Soc Jpn 81:992–994CrossRefGoogle Scholar
  71. 71.
    Tsunobuchi Y, Kosaka W, Nuida T, Ohkoshi S (2009) Magnetization-induced second harmonic generation in a three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. CrystEngComm 11:2051–2053CrossRefGoogle Scholar
  72. 72.
    Kosaka W, Nuida T, Hashimoto K, Ohkoshi S (2007) Crystal structure, magnetic properties, and second harmonic generation of a three-dimensional pyroelectric cyano-bridged Mn–Mo complex. Bull Chem Soc Jpn 80:960–962CrossRefGoogle Scholar
  73. 73.
    Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40:3249–3265CrossRefPubMedGoogle Scholar
  74. 74.
    Kahn O, Larionova J, Yakhmi JV (1999) Molecular magnetic sponges. Chem Eur J 5:3443–3449CrossRefGoogle Scholar
  75. 75.
    Kaneko W, Ohba M, Kitagawa S (2007) A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J Am Chen Soc 129:13706–13712CrossRefGoogle Scholar
  76. 76.
    Pinkowicz D, Podgajny R et al (2008) Magnetic sponge-like behavior of 3D ferrimagnetic {[MnII(imH)]2[NbIV(CN)8]}n with Tc = 62 K. Inorg Chem 47:9745–9747CrossRefPubMedGoogle Scholar
  77. 77.
    Pinkowicz D, Podgajny R et al (2011) Double switching of a magnetic coordination framework through intraskeletal molecular rearrangement. Angew Chem Int Ed 50:3973–3977CrossRefGoogle Scholar
  78. 78.
    Milon J, Daniel MC, Kaiba A, Guionneau P, Brandes S, Sutter JP (2007) Nanoporous magnets of chiral and racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with switchable ordering temperatures (TC = 85 K ↔ 106 K) driven by H2O sorption (L = N,N-dimethylalaninol). J Am Chem Soc 129:13872–13878CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang YJ, Liu T, Kanegawa S, Sato O (2009) Reversible single-crystal-to-single-crystal transformation from achiral antiferromagnetic hexanuclears to a chiral ferrimagnetic double zigzag chain. J Am Chem Soc 131:7942–7943CrossRefPubMedGoogle Scholar
  80. 80.
    Ohkoshi S, Tsunobuchi Y, Takahashi H, Hozumi T, Shiro M, Hashimoto K (2007) Synthesis and alcohol vapor sensitivity of a ferromagnetic copper−tungsten bimetallic assembly. J Am Chem Soc 129:3084–3085CrossRefPubMedGoogle Scholar
  81. 81.
    Wang QL, Southerland H, Li JR, Prosvirin AV, Zhao H, Dunbar KR (2012) Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature. Angew Chem Int Ed 51:9321–9324CrossRefGoogle Scholar
  82. 82.
    Yanai N, Kaneko W, Yoneda K, Ohba M, Kitagawa S (2007) Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet. J Am Chem Soc 129:3496–3497CrossRefPubMedGoogle Scholar
  83. 83.
    Nowicka B, Reczyński M, Rams M, Nitek W, Kozieł M, Sieklucka B (2015) Larger pores and higher Tc: {[Ni(cyclam)]3[W(CN)8]2·solv}n – a new member of the largest family of pseudo-polymorphic isomers among octacyanometallate-based assemblies. CrystEngComm 17:3526–3532CrossRefGoogle Scholar
  84. 84.
    Nowicka B, Reczyński M, Bałanda M, Fitta M, Gaweł B, Sieklucka B (2016) The rule rather than the exception: structural flexibility of [Ni(cyclam)]2+-based cyano-bridged magnetic networks. Cryst Growth Des 16:4736–4743CrossRefGoogle Scholar
  85. 85.
    Chorazy S, Podgajny R et al (2015) Optical activity and dehydration-driven switching of magnetic properties in enantiopure cyanido-bridged CoII3WV2 trigonal bipyramids. Inorg Chem 54:5784–5794CrossRefPubMedGoogle Scholar
  86. 86.
    Nowicka B, Heczko M, Reczyński M, Rams M, Nitek W, Gaweł B, Sieklucka B (2016) Exploration of a new building block for the construction of cyano-bridged solvatomagnetic assemblies: [N(cyclam)]3+. CrystEngComm 18:7011–7020CrossRefGoogle Scholar
  87. 87.
    Herchel R, Tuček J, Trávníček Z, Petridis D, Zbořil R (2011) Crystal water molecules as magnetic tuners in molecular metamagnets exhibiting antiferro-ferro-paramagnetic transitions. Inorg Chem 50:9153–9163CrossRefPubMedGoogle Scholar
  88. 88.
    Maspoch D et al (2007) Structural and magnetic modulation of a purely organic open framework by selective guest inclusion. Chem Eur J 13:8153–8163CrossRefPubMedGoogle Scholar
  89. 89.
    Ohba M, Maruono N, Okawa H, Enoki T, Latour JM (1994) A new bimetallic ferromagnet, [Ni(en)2]3[Fe(CN)6]2∙2H2O, with a rare rope-ladder chain structure. J Am Chem Soc 116:11566–11567CrossRefGoogle Scholar
  90. 90.
    Ferlay S, Mallah T, Vaissermann J, Bartolome F, Veillet P, Verdaguer M (1996) A chromium(III) nickel(II) cyanide-bridged ferromagnetic layered structure with corrugated sheets. Chem Commun 1996:2481–2482CrossRefGoogle Scholar
  91. 91.
    Colacio E, Dominguez-Vera JM, Ghazi M, Kivekas R, Lloret F, Morenoa JM, Stoeckli-Evans H (1999) A novel two-dimensional honeycomb-like bimetallic iron(III)–nickel(II) cyanide-bridged magnetic material [Ni(cyclam)]3[Fe(CN)6]2·nH2O (cyclam = 1,4,8,11-tetraazacyclodecane). Chem Commun 1999:987–988CrossRefGoogle Scholar
  92. 92.
    Marvaud V, Decroix C, Scuiller A, Guyard-Duhayon C, Vaissermann J, Gonnet F, Verdaguer M (2003) Hexacyanometalate molecular chemistry: heptanuclear heterobimetallic complexes; control of the ground spin state. Chem Eur J 8:1677–1691CrossRefGoogle Scholar
  93. 93.
    Tuyèras F, Scuiller A, Duhayon C, Hernandez-Molina M, Fabrizi de Biani F, Verdaguer M, Mallah T, Wernsdorfer W, Marvaud V (2008) Hexacyanidometalate molecular chemistry, part III: di-, tri-, tetra-, hexa- and hepta-nuclear chromium–nickel complexes: control of spin, structural anisotropy, intra- and inter-molecular exchange couplings. Inorg Chim Acta 361:3505–3518CrossRefGoogle Scholar
  94. 94.
    Gu ZZ, Einaga Y, Sato O, Fujishima A, Hashimoto K (2001) Photo- and dehydration-induced charge transfer processes accompanied with spin transition on CoFe(CN)5NH3∙ 6H2O. J Solid State Chem 159:336–342ADSCrossRefGoogle Scholar
  95. 95.
    Liu M, Bian XF, Xia YF, Bao Z, Wu HS, Xu MX (2011) Variation of magnetic properties with different annealed temperatures in the Ni3[Fe(CN)6]2∙XH2O. Curr Appl Phys 11:271–275ADSCrossRefGoogle Scholar
  96. 96.
    Nowicka B, Reczyński M, Rams M, Nitek W, Żukrowski J, Kapusta C, Sieklucka B (2015) Hydration-switchable charge transfer in the first bimetallic assembly based on the [Ni(cyclam)]3+ − magnetic CN-bridged chain {(H3O)[NiIII(cyclam)] [FeII(CN)6]·5H2O}n. Chem Commun 51:11485–11488CrossRefGoogle Scholar
  97. 97.
    Ohba M et al (2009) Bidirectional chemo-switching of spin state in a microporous framework. Angew Chem Int Ed 48:4767–4771CrossRefGoogle Scholar
  98. 98.
    Bartual-Murgui C et al (2012) Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chem Eur J 18:507–516CrossRefPubMedGoogle Scholar
  99. 99.
    Berlinguette CP, Dragulescu-Andrasi A, Sieber A, Güdel HU, Achim C, Dunbar KR (2005) A charge-transfer-induced spin transition in a discrete complex: the role of extrinsic factors in stabilizing three electronic isomeric forms of a cyanide-bridged co/Fe cluster. J Am Chem Soc 127:6766–6779CrossRefPubMedGoogle Scholar
  100. 100.
    Ozaki N, Tokoro H, Miyamotoa Y, Ohkoshi S (2014) Humidity dependency of the thermal phase transition of a cyano bridged Co–W bimetal assembly. New J Chem 38:1950–1954CrossRefGoogle Scholar
  101. 101.
    Koumousi ES et al (2014) Metal-to-metal electron transfer in co/Fe Prussian blue molecular analogues: the ultimate miniaturization. J Am Chem Soc 136:15461–15464CrossRefPubMedGoogle Scholar
  102. 102.
    Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc Chem Res 46:2376–2384CrossRefPubMedGoogle Scholar
  103. 103.
    Imoto K, Nakagawa K, Miyahara H, Ohkoshi S (2013) Super-ionic conductive magnet based on a cyano-bridged Mn−Nb bimetal assembly. Cryst Growth Des 13:4673–4677CrossRefGoogle Scholar
  104. 104.
    Okubo M (2013) Reversible solid state redox of an octacyanometallate-bridged coordination polymer by electrochemical ion insertion/extraction. Inorg Chem 52:3772–3779CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tomasz Korzeniak
    • 1
  • Beata Nowicka
    • 1
  • Barbara Sieklucka
    • 1
  1. 1.Wydział ChemiiUniwersytet JagiellońskiKrakówPoland

Personalised recommendations