Rhodium Catalyzed Decarbonylation

  • Eduardo J. García-SuárezEmail author
  • Klara Kahr
  • Anders RiisagerEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 61)


Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope effects as well as computational studies of model systems, which give an indication of the scope of the process. In this chapter, fundamental applications of Rh-catalyzed decarbonylation reactions are surveyed and discussed, including cross-coupling reactions, tandem reactions, and alternative methodologies for process intensification.


Aldehydes Aryl-aryl coupling Continuous-flow systems Cross-coupling Decarbonylation Heck coupling Ionic liquids Oppenauer oxidation Pauson–Khand Rhodium Sugars Tandem reaction 


  1. 1.
    Bierhals J (2012) Carbon monoxide. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Elschenbroich C, Salzer A (2006) Organometallics: a concise introduction. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Omaye ST (2002) Toxicology 180:139CrossRefGoogle Scholar
  4. 4.
    Necas D, Kotora M (2007) Curr Org Chem 11:1566CrossRefGoogle Scholar
  5. 5.
    Tsuji J, Ohno K (1965) Tetrahedron Lett 44:3969Google Scholar
  6. 6.
    Doughty DH, Pignolet LH (1978) J Am Chem Soc 100:7083CrossRefGoogle Scholar
  7. 7.
    Beck CM, Rathmill SE, Park YJ, Chen J, Crabtree RH, Liable-Sands LM, Rheingold AL (1999) Organometallics 18:5311CrossRefGoogle Scholar
  8. 8.
    Fristrup P, Kreis M, Palmelund A, Norrby P-O, Madsen R (2008) J Am Chem Soc 130:5206CrossRefGoogle Scholar
  9. 9.
    Gutmann B, Elsner P, Glasnov T, Roberge DM, Kappe CO (2014) Angew Chem Int Ed 53:11557CrossRefGoogle Scholar
  10. 10.
    Moritani I, Fujiwara Y (1968) Tetrahedron Lett 24:4819CrossRefGoogle Scholar
  11. 11.
    Ueura K, Satoh T, Miura M (2007) Org Lett 9:1407CrossRefGoogle Scholar
  12. 12.
    Baudoin O (2007) Angew Chem Int Ed 46:1373CrossRefGoogle Scholar
  13. 13.
    Goossen LJ, Rodriguez N, Goossen K (2008) Angew Chem Int Ed 47:3100CrossRefGoogle Scholar
  14. 14.
    Qiu R, Zhang L, Xu C, Pan Y, Pang H, Xu L, Li H (2015) Adv Synth Catal 357:1229CrossRefGoogle Scholar
  15. 15.
    Jin W, Yu Z, He W, Ye W, Xiao W-J (2009) Org Lett 11:1317CrossRefGoogle Scholar
  16. 16.
    Zhao XD, Yu ZJ (2008) J Am Chem Soc 130:8136CrossRefGoogle Scholar
  17. 17.
    Ye W, Luo N, Yu Z (2010) Organometallics 29:1049CrossRefGoogle Scholar
  18. 18.
    Heck FR, Nolley JP (1972) J Org Chem 37:2320CrossRefGoogle Scholar
  19. 19.
    Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44:581CrossRefGoogle Scholar
  20. 20.
    Kang L, Zhang F, Ding L-T, Yang L (2015) RSC Adv 5:100452CrossRefGoogle Scholar
  21. 21.
    Yang F-L, Ma X-T, Trian S-K (2012) Chem Eur J 18:1582CrossRefGoogle Scholar
  22. 22.
    Zhang Y-G, Liu X-L, He Z-Y, Li X-M, Kang H-J, Tian S-K (2014) Chem Eur J 20:2765CrossRefGoogle Scholar
  23. 23.
    Yang L, Correia CA, Guo X, Li CJ (2010) Tetrahedron Lett 51:5486CrossRefGoogle Scholar
  24. 24.
    Sugihara T, Satoh T, Miura M, Nomura M (2003) Angew Chem Int Ed 42:4672CrossRefGoogle Scholar
  25. 25.
    Sugihara T, Satoh T, Miura M, Nomura M (2004) Adv Synth Catal 346:1765CrossRefGoogle Scholar
  26. 26.
    Yang L, Zeng T, Shuai Q, Guo X, Li C-J (2011) Chem Commun 47:2161CrossRefGoogle Scholar
  27. 27.
    Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359CrossRefGoogle Scholar
  28. 28.
    Ashenhurst JA (2010) Chem Soc Rev 39:540CrossRefGoogle Scholar
  29. 29.
    Li C-J (2009) Acc Chem Res 42:335CrossRefGoogle Scholar
  30. 30.
    Baslé O, Bidange J, Shuai Q, Li C-J (2010) Adv Synth Catal 352:1145CrossRefGoogle Scholar
  31. 31.
    Guo X, Wang J, Li C-J (2009) J Am Chem Soc 131:15092CrossRefGoogle Scholar
  32. 32.
    Guo X, Wang J, Li C-J (2010) Org Lett 12:3176CrossRefGoogle Scholar
  33. 33.
    Shaui Q, Yang L, Guo X, Basle O, Li C-J (2010) J Am Chem Soc 132:12212CrossRefGoogle Scholar
  34. 34.
    Yang L, Guo X, Li C-J (2010) Adv Synth Catal 352:2899CrossRefGoogle Scholar
  35. 35.
    Guo X, Wang J, Li C-J (2009) J Am Chem Soc 131:15092CrossRefGoogle Scholar
  36. 36.
    Tietze LF, Beifuss U (1993) Angew Chem Int Ed 32:131CrossRefGoogle Scholar
  37. 37.
    Pellissier H (2006) Tetrahedron 26:1619CrossRefGoogle Scholar
  38. 38.
    Nicolaou KC, Edmonds DJ, Bulger PG (2006) Angew Chem Int Ed 45:7134CrossRefGoogle Scholar
  39. 39.
    Pellissier H (2006) Tetrahedron 62:2143CrossRefGoogle Scholar
  40. 40.
    Enders D, Grondal C, Hüttl MRM (2007) Angew Chem Int Ed 46:1570CrossRefGoogle Scholar
  41. 41.
    Grondal C, Jeanty M, Enders D (2010) Nat Chem 2:167CrossRefGoogle Scholar
  42. 42.
    Kreis M, Palmelund A, Bunch L, Madsen R (2006) Adv Synth Catal 348:2148–2154CrossRefGoogle Scholar
  43. 43.
    Dierkes P, van Leeuwen PWNM (1999) J Chem Soc Dalton Trans 1519Google Scholar
  44. 44.
    Old DW, Wolfe JP, Buchwald SL (1998) J Am Chem Soc 120:9722CrossRefGoogle Scholar
  45. 45.
    Poulsen CS, Madsen RJ (2002) Org Chem 67:4441CrossRefGoogle Scholar
  46. 46.
    Burke MD, Schreiber SL (2004) Angew Chem Int Ed 43:46CrossRefGoogle Scholar
  47. 47.
    Fessard TC, Andrews SP, Motoyoshi H, Carreira EM (2007) Angew Chem Int Ed 46:9331CrossRefGoogle Scholar
  48. 48.
    Bell S, Wuestenberg B, Kaiser S, Menges F, Pfaltz A (2006) Science 311:5761CrossRefGoogle Scholar
  49. 49.
    Fessard TC, Motoyoshi H, Carreira EM (2007) Angew Chem Int Ed 46:2078CrossRefGoogle Scholar
  50. 50.
    Paquin JF, Defieber C, Stephenson CRJ, Carreira EM (2005) J Am Chem Soc 127:10850CrossRefGoogle Scholar
  51. 51.
    Morimoto T, Fuji K, Tsutsumi K, Kakiuchi K (2002) J Am Chem Soc 124:3806CrossRefGoogle Scholar
  52. 52.
    Morimoto T, Fujioka M, Fuji K, Tsutsumi K, Kakiuchi K (2007) J Organomet Chem 692:625CrossRefGoogle Scholar
  53. 53.
    Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) Tetrahedron Lett 27:279CrossRefGoogle Scholar
  54. 54.
    Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Tetrahedron Lett 27:4945CrossRefGoogle Scholar
  55. 55.
    Kappe CO (2004) Angew Chem Int Ed 43:6250CrossRefGoogle Scholar
  56. 56.
    Kappe CO, Dallinger D (2006) Nat Rev Drug Discov 5:51CrossRefGoogle Scholar
  57. 57.
    Lee H-W, Lee L-N, Chan ASC, Kwong F-Y (2008) Eur J Org Chem 19:3403Google Scholar
  58. 58.
    Monard RN, Madsen R (2007) J Org Chem 7:9782CrossRefGoogle Scholar
  59. 59.
    Györgydeák Z, Pelyvás IF (1998) Monosaccharide sugars: chemical synthesis by chain elongation, degradation and epimerization. Academic Press, San DiegoGoogle Scholar
  60. 60.
    Ruff O (1898) Chem Ber 31:1573CrossRefGoogle Scholar
  61. 61.
    Hendriks HEJ, Kuster BFM, Marin GB (1991) Carbohydr Res 214:71CrossRefGoogle Scholar
  62. 62.
    Humphlett WJ (1967) Carbohydr Res 4:157CrossRefGoogle Scholar
  63. 63.
    Monrad RN, Madsen R (2007) J Org Chem 72:9782CrossRefGoogle Scholar
  64. 64.
    Andrews MA, Gould GL, Klaeren SA (1989) J Org Chem 54:5257CrossRefGoogle Scholar
  65. 65.
    Cole-Hamilton DJ, Tooze RP (2006) Homogeneous catalysis – advantages and problems. In: Cole-Hamilton DJ, Tooze RP (eds) Catalyst separation, recovery and recycling, Catalysis by metal complexes, vol 30. Springer, DordrechtCrossRefGoogle Scholar
  66. 66.
    Haumann M, Riisager A (2008) Chem Rev 108:1474CrossRefGoogle Scholar
  67. 67.
    Garcia-Suarez EJ, Khokarale SG, Van Buu ON, Fehrmann R, Riisager A (2014) Green Chem 16:161CrossRefGoogle Scholar
  68. 68.
    Malcho P, Garcia-Suarez EJ, Riisager A (2014) RSC Adv 4:58151CrossRefGoogle Scholar
  69. 69.
    Bröhmer MC, Volz N, Bräse S (2009) Synlett 1383–1386Google Scholar
  70. 70.
    Malcho P, Garcia-Suarez EJ, Mentzel UV, Engelbrekt C, Riisager A (2014) Dalton Trans 43:17230CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Catalysis and Sustainable Chemistry, Department of ChemistryTechnical University of DenmarkLyngbyDenmark

Personalised recommendations