Rhodium-Catalysed Hydrogenations Using Monodentate Ligands

  • Mattia Cettolin
  • Pim Puylaert
  • Johannes G. de VriesEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 61)


The use of monodentate phosphorus ligands, such as phosphonites, phosphites and phosphoramidites, in the rhodium-catalysed asymmetric hydrogenation of a range of mostly alkene type substrates was reported for the first time in 2000. Not only are these ligands cheap and easy to prepare in one or two steps, their use has also created new opportunities, such as their robotic parallel synthesis and the use of complexes containing two different monodentate ligands, which tremendously increases the available diversity. This review covers the period between 2006 and 2016. Many new ligands have been made during this time; not only new variants on the three ligand types that were earlier reported, but also monodentate phosphines and secondary phosphine oxides. These were mostly tested on the usual N-acetyl-dehydroamino acids, itaconic esters and enamide type substrates. Other more novel substrates were N-formyl-dehydroamino acids, all the variants of the beta-dehydroamino acid family, enol esters, 2-methylidene-1,2,3,4-tetrahydro-β-carbolines, alkenes containing phosphonate or thioether substituents, several substituted acrylic acids as well as substituted cinnamic acids. The mechanism of the rhodium-catalysed hydrogenation with phosphites, phosphonites, phosphoramidites as well as phosphepines has been reported. A common theme in these mechanisms is the formation of a dimeric bimetallic complex after subjecting the [RhL2(cod)]X or [RhL2(nbd)]X (X = BF4,PF6, SbF6) complexes to hydrogen. Since these hydrogenations are usually carried out in non-polar solvents, the formation of the expected RhL2(Solvent)2 complexes does not occur after the removal of the diene and instead each rhodium atom in these dimeric complexes coordinates not only to two monodentate ligands, but also in η6 fashion to an aromatic ring of one of the ligands that is bound to the other rhodium atom. These complexes can react with the substrate to form the substrate complex that is hydrogenated. Other studies also found that it is possible to form rhodium hydride complexes first, which react with the substrate to form product. There is one well-described industrial application on large scale in which a substituted 2-isopropyl-cinnamic acid is hydrogenated using a rhodium complex with a mixture of 2 eq. of 3,3’-dimethyl-PipPhos and 1 eq. of triphenylphosphine. The addition of the non-chiral triarylphosphine not only accelerated the reaction 50-fold, also the enantioselectivity was much improved. The product was used as a building block for AliskirenTM, a blood-pressure lowering agent.


Asymmetric hydrogenation Homogeneous catalysis Mechanism Monodentate ligands Phosphines Phosphites Phosphonites Phosphoramidites Production Secondary phospineoxides Supramolecular catalysis 


  1. 1.
    Knowles WS, Sabacky MJ (1968) J Chem Soc Chem Commun 1445Google Scholar
  2. 2.
    Knowles WS (1983) Acc Chem Res 16:106CrossRefGoogle Scholar
  3. 3.
    Horner L, Siegel H, Büthe H (1968) Angew Chem Int Ed Engl 7:942CrossRefGoogle Scholar
  4. 4.
    Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ (1977) J Am Chem Soc 99:5946CrossRefGoogle Scholar
  5. 5.
    Dang TP, Kagan HB (1971) J Chem Soc Chem Commun 481Google Scholar
  6. 6.
    Kagan HB, Dang TP (1972) J Am Chem Soc 94:6429CrossRefGoogle Scholar
  7. 7.
    Knowles WS, Sabacky MJ, Vineyard BD (1972) J Chem Soc Chem Commun 10Google Scholar
  8. 8.
    Claver C, Fernandez E, Gillon A, Heslop K, Hyett DJ, Martorell A, Orpen AG, Pringle PG (2000) Chem Commun 961Google Scholar
  9. 9.
    Reetz MT, Sell T (2000) Tetrahedron Lett 41:6333CrossRefGoogle Scholar
  10. 10.
    Reetz MT, Mehler G (2000) Angew Chem Int Ed 39:3889CrossRefGoogle Scholar
  11. 11.
    van den Berg M, Minnaard AJ, Schudde EP, van Esch J, de Vries AHM, de Vries JG, Feringa BL (2000) J Am Chem Soc 122:11539CrossRefGoogle Scholar
  12. 12.
    Minnaard AJ, Feringa BL, Lefort L, de Vries JG (2007) Acc Chem Res 40:1267CrossRefGoogle Scholar
  13. 13.
    Reetz MT, Sell T, Meiswinkel A, Mehler G (2003) Angew Chem Int Ed 42:790CrossRefGoogle Scholar
  14. 14.
    Reetz MT, Mehler G (2003) Tetrahedron Lett 44:4593CrossRefGoogle Scholar
  15. 15.
    Pena D, Minnaard AJ, Boogers JAF, de Vries AHM, de Vries JG, Feringa BL (2003) Org Biomol Chem 1:1087CrossRefGoogle Scholar
  16. 16.
    Hoen R, Boogers JAF, Bernsmann H, Minnaard AJ, Meetsma A, Tiemersma-Wegman TD, de Vries AHM, de Vries JG, Feringa BL (2005) Angew Chem Int Ed 44:4209CrossRefGoogle Scholar
  17. 17.
    Gennari C, Monti C, Piarulli U, de Vries JG, de Vries AHM, Lefort L (2005) Chem Eur J 11:6701CrossRefGoogle Scholar
  18. 18.
    Reetz MT, Li X (2006) Chem Commun 2159Google Scholar
  19. 19.
    Lefort L, Boogers JAF, de Vries AHM, de Vries JG (2004) Org Lett 6:1733CrossRefGoogle Scholar
  20. 20.
    Junge K, Oehme G, Monsees A, Riermeier T, Dingerdissen U, Beller M (2002) Tetrahedron Lett 43:4977CrossRefGoogle Scholar
  21. 21.
    Enthaler S, Erre G, Junge K, Michalik D, Spannenberg A, Marras F, Gladiali S, Beller M (2007) Tetrahedron Asymmetry 18:1288CrossRefGoogle Scholar
  22. 22.
    Enthaler S, Erre G, Junge K, Holz J, Börner A, Alberico E, Nieddu I, Gladiali S, Beller M (2007) Org Proc Res Dev 11:568CrossRefGoogle Scholar
  23. 23.
    Gladiali S, Alberico E, Junge K, Beller M (2011) Chem Soc Rev 40:3744CrossRefGoogle Scholar
  24. 24.
    Erre G, Enthaler S, Junge K, Gladiali S, Beller M (2008) Coord Chem Rev 252:471CrossRefGoogle Scholar
  25. 25.
    Hu A-G, Fu Y, Xie J-H, Zhou H, Wang L-X, Zhou Q-L (2002) Angew Chem Int Ed 41:2348CrossRefGoogle Scholar
  26. 26.
    Fu Y, Xie J-H, Hu A-G, Zhou H, Wang L-X, Zhou Q-L (2002) Chem Commun 480Google Scholar
  27. 27.
    Zhu S-F, Fu Y, Xie J-H, Liu B, Xing L, Zhou Q-L (2003) Tetrahedron Asymmetry 14:3219CrossRefGoogle Scholar
  28. 28.
    Jiang X-B, Minnaard AJ, Hessen B, Feringa BL, Duchateau ALL, Andrien JGO, Boogers JAF, de Vries JG (2003) Org Lett 5:1503CrossRefGoogle Scholar
  29. 29.
    Jiang X-B, van den Berg M, Minnaard AJ, Feringa BL, de Vries JG (2004) Tetrahedron Asymmetry 15:2223CrossRefGoogle Scholar
  30. 30.
    Jerphagnon T, Renaud J-L, Bruneau C (2004) Tetrahedron Asymmetry 15:2101CrossRefGoogle Scholar
  31. 31.
    de Vries JG (2005) In: Ager DJ (ed) Handbook of chiral chemicals, 2nd edn. CRC Press, Boca Raton, pp 269–286Google Scholar
  32. 32.
    van den Berg M, Feringa BL, Minnaard AJ (2007) In: de Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenation, vol 2. Wiley-VCH, Weinheim, p 995Google Scholar
  33. 33.
    Bondarev OG, Goddard R (2006) Tetrahedron Lett 47:9013CrossRefGoogle Scholar
  34. 34.
    Eberhardt L, Armspach D, Matt D, Toupet L, Oswald B (2007) Eur J Org Chem 5395Google Scholar
  35. 35.
    Lyubimov SE, Davankov VA, Valetskii PM, Petrovskii PV, Maksimova MG, Gavrilov KN (2006) Russ Chem Bull Int Ed 55:1448CrossRefGoogle Scholar
  36. 36.
    Liu Y, Ding K, Am J (2005) Chem Soc 127:10488CrossRefGoogle Scholar
  37. 37.
    Zhao B, Wang Z, Ding K (2006) Adv Synth Catal 348:1049CrossRefGoogle Scholar
  38. 38.
    Liu Y, Wang Z, Ding K (2012) Tetrahedron 68:7581CrossRefGoogle Scholar
  39. 39.
    Eberhardt L, Armspach D, Harrowfield J, Matt D (2008) Chem Soc Rev 37:839CrossRefGoogle Scholar
  40. 40.
    Eberhardt L, Armspach D, Matt D, Toupet L, Oswald B (2007) Eur J Inorg Chem 4153Google Scholar
  41. 41.
    Zhu S-F, Liu T, Yang S, Song S, Zhou Q-L (2012) Tetrahedron 68:7685CrossRefGoogle Scholar
  42. 42.
    Lyubimow SE, Tyutyunov AA, Kalinin VN, Said-Galiev EE, Khokhlov AR, Petrovskii PV, Davankov VA (2007) Tetrahedron Lett 48:8217CrossRefGoogle Scholar
  43. 43.
    Lyubimow SE, Davankov VA, Petrovskii PV, Hey-Hawkins E, Tyutyunov AA, Rys EG, Kalinin VN (2008) J Organomet Chem 693:3689CrossRefGoogle Scholar
  44. 44.
    Lyubimow SE, Kuchurov IV, Tyutyunov AA, Petrovskii PV, Kalinin VN, Zlotin SG, Davankov VA, Hey-Hawkins E (2010) Catal Commun 11:419CrossRefGoogle Scholar
  45. 45.
    Lyubimow SE, Rastorguev EA, Verbitskaya TA, Petrovskii PV, Hey-Hawkins E, Kalinin VN, Davankov VA (2011) Polyhedron 30:1258CrossRefGoogle Scholar
  46. 46.
    Schmitz C, Leitner W, Franciò G (2015) Eur J Org Chem 2889Google Scholar
  47. 47.
    Iuliano A, Losi D, Facchetti S (2007) J Org Chem 72:8472CrossRefGoogle Scholar
  48. 48.
    Reetz MT, Li X (2005) Angew Chem Int Ed 44:2959CrossRefGoogle Scholar
  49. 49.
    Monti C, Gennari C, Piarulli U, de Vries JG, De Vries AHM, Lefort L (2005) Chem Eur J 11:6701CrossRefGoogle Scholar
  50. 50.
    Frank DJ, Franzke A, Pfaltz A (2013) Chem Eur J 19:2405CrossRefGoogle Scholar
  51. 51.
    Breit B, Fuchs E (2006) Synthesis 2121Google Scholar
  52. 52.
    Kokan Z, Kirin SI (2013) Eur J Org Chem 8154Google Scholar
  53. 53.
    Hopewell J, Jankowski P, McMullin CL, Orpen AG, Pringle PG (2010) Chem Commun 46:100CrossRefGoogle Scholar
  54. 54.
    Galland A, Dobrota C, Toffano M, Fiaud J-C (2006) Tetrahedron Asymmetry 17:2354CrossRefGoogle Scholar
  55. 55.
    Dobrota C, Fiaud J-C, Toffano M (2015) ChemCatChem 7:144CrossRefGoogle Scholar
  56. 56.
    Wang X-B, Goto M, Han L-B (2015) Chem Eur J 20:3631CrossRefGoogle Scholar
  57. 57.
    Bruneau C, Renaud J-L, Jerphagnon T (2008) Coord Chem Rev 252:532CrossRefGoogle Scholar
  58. 58.
    Hoen R, Tiemersma-Wegman T, Procuranti B, Lefort L, de Vries JG, Minnaard AJ, Feringa BL (2007) Org Biol Chem 5:267CrossRefGoogle Scholar
  59. 59.
    Hekking KFW, Lefort L, de Vries AHM, van Delft FL, Schoemaker HE, de Vries JG, Rutjes FPJT (2008) Adv Synth Catal 350:85CrossRefGoogle Scholar
  60. 60.
    Lefort L, Boogers JAF, Kuilman T, Vijn RJ, Janssen J, Straatman H, de Vries JG, De Vries AHM (2010) Org Proc Res Dev 14:568CrossRefGoogle Scholar
  61. 61.
    Mršić N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG (2010) Tetrahedron Asymmetry 21:7CrossRefGoogle Scholar
  62. 62.
    Meindertsma AF, Pollard MM, Feringa BL, de Vries JG, Minnaard AJ (2007) Tetrahedron Asymmetry 18:2849CrossRefGoogle Scholar
  63. 63.
    Zhang J, Li Y, Wang Z, Ding K (2011) Angew Chem Int Ed 50:11743CrossRefGoogle Scholar
  64. 64.
    Dong K, Li Y, Wang Z, Ding K (2013) Angew Chem Int Ed 52:14191CrossRefGoogle Scholar
  65. 65.
    Dong K, Li Y, Wang Z, Ding K (2014) Org Chem Front 1:155CrossRefGoogle Scholar
  66. 66.
    Li Y, Wang Z, Ding K (2015) Angew Chem Int Ed 21:16387Google Scholar
  67. 67.
    van den Berg M, Minnaard AJ, Haak RM, Leeman M, Schudde EP, Meetsma A, Feringa BL, de Vries AHM, Elizabeth C, Maljaars P, Willans CE, Hyett D, Boogers JAF, Henderickx HJW, de Vries JG (2003) Adv Synth Catal 345:308CrossRefGoogle Scholar
  68. 68.
    Reetz MT, Meiswinkel A, Mehler G, Angermund K, Graf M, Thiel W, Mynott R, Blackmond DG (2005) J Am Chem Soc 127:10305CrossRefGoogle Scholar
  69. 69.
    Reetz MT, Fu Y, Meiswinkel A (2006) Angew Chem Int Ed 45:1412CrossRefGoogle Scholar
  70. 70.
    Gridnev ID, Fan C, Pringle PG (2007) Chem Commun 1319Google Scholar
  71. 71.
    Alberico E, Baumann W, de Vries JG, Drexler H-J, Gladiali S, Heller D, Henderickx HJW, Lefort L (2011) Chem Eur J 17:12683CrossRefGoogle Scholar
  72. 72.
    Gridnev ID, Alberico E, Gladiali S (2012) Chem Commun 48:2186CrossRefGoogle Scholar
  73. 73.
    Schiaffino L, Ercolani G (2011) J Phys Org Chem 24:257CrossRefGoogle Scholar
  74. 74.
    Liu Y, Sandoval CA, Yamaguchi Y, Zhang X, Wang Z, Kato K, Ding K (2006) J Am Chem Soc 128:14212CrossRefGoogle Scholar
  75. 75.
    Weis M, Waloch C, Seiche W, Breit B (2006) J Am Chem Soc 128:4188CrossRefGoogle Scholar
  76. 76.
    Birkholz M-N, Dubrovina NV, Jiao H, Michalik D, Holz J, Paciello R, Breit B, Börner A (2007) Chem Eur J 13:5896CrossRefGoogle Scholar
  77. 77.
    Patureau FW, Kuil M, Sandee AJ, Reek JNH (2008) Angew Chem Int Ed 47:3180CrossRefGoogle Scholar
  78. 78.
    Breuil P-AR, Reek JNH (2009) Eur J Org Chem 6225Google Scholar
  79. 79.
    Breuil P-AR, Patureau FW, Reek JNH (2009) Angew Chem Int Ed 48:2162CrossRefGoogle Scholar
  80. 80.
    Meeuwissen J, Kuil M, van der Burg AM, Sandee AJ, Reek JNH (2009) Chem Eur J 15:10272CrossRefGoogle Scholar
  81. 81.
    Terrade FG, Kluwer AM, Detz RJ, Abiri Z, van der Burg AM, Reek JNH (2015) ChemCatChem 7:3368CrossRefGoogle Scholar
  82. 82.
    Wieland J, Breit B (2010) Nat Chem 2:832CrossRefGoogle Scholar
  83. 83.
    Pignataro L, Lynikaite B, Cvengroš J, Marchini M, Piarulli U, Gennari C (2009) Eur J Org Chem 2539Google Scholar
  84. 84.
    Pignataro L, Carboni S, Civera M, Colombo R, Piarulli U, Gennari C (2010) Angew Chem Int Ed 49:6633CrossRefGoogle Scholar
  85. 85.
    Pignataro L, Boghi M, Civera M, Carboni S, Piarulli U, Gennari C (2012) Chem Eur J 18:1383CrossRefGoogle Scholar
  86. 86.
    Pignataro L, Bovio C, Civera M, Carboni S, Piarulli U, Gennari C (2012) Chem Eur J 18:10368CrossRefGoogle Scholar
  87. 87.
    Hattori G, Hori T, Miyake Y, Nishibayashi Y (2007) J Am Chem Soc 129:12930CrossRefGoogle Scholar
  88. 88.
    Li Y, Feng Y, He YM, Chen F, Pan J, Fan Q-H (2008) Tetrahedron Lett 49:2878CrossRefGoogle Scholar
  89. 89.
    Raynal M, Portier F, van Leeuwen PWHM, Bouteiller L (2013) J Am Chem Soc 135:17687CrossRefGoogle Scholar
  90. 90.
    Thacker NC, Moteki SA, Takacs JM (2012) ACS Catal 2:2743–2752CrossRefGoogle Scholar
  91. 91.
    Boogers JAF, Felfer U, Kotthaus M, Lefort L, Steinbauer G, de Vries AHM, de Vries JG (2007) Org Proc Res Dev 11:585–591CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mattia Cettolin
    • 1
    • 2
  • Pim Puylaert
    • 2
  • Johannes G. de Vries
    • 2
    • 3
    Email author
  1. 1.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanItaly
  2. 2.Leibniz Institut für Katalyse e. V.RostockGermany
  3. 3.Stratingh Institute for ChemistryGroningenThe Netherlands

Personalised recommendations