Advertisement

Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes

  • Hiromasa TanakaEmail author
  • Kazunari YoshizawaEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)

Abstract

The transformation of N2 into NH3 (nitrogen fixation) on transition metal complexes generally involves complicated elementary reaction steps and a number of possible reaction intermediates because at least six pairs of proton and electron (or six hydrogen atoms) must take part in this process. Mechanistic details of nitrogen fixation will be disclosed by close liaison between theory and experiment. In this chapter, recent advances in the mechanistic understanding of the catalytic transformation of N2 to NH3 on mono- and dinuclear Mo–N2 complexes are overviewed from a theoretical perspective. In particular, catalytic mechanisms of nitrogen fixation by dinitrogen-bridged dimolybdenum complexes bearing pincer ligands are discussed in detail based on density-functional-theory calculations corroborated by experimental findings.

Keywords

Catalytic mechanism Molybdenum Nitrogen fixation Pincer ligand Theoretical calculation 

References

  1. 1.
    Burgess BK, Lowe DJ (1996) Chem Rev 96:2983–3011CrossRefGoogle Scholar
  2. 2.
    Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696–1700CrossRefGoogle Scholar
  3. 3.
    Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940CrossRefGoogle Scholar
  4. 4.
    Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974–977CrossRefGoogle Scholar
  5. 5.
    Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Chem Rev 114:4041–4062CrossRefGoogle Scholar
  6. 6.
    Liu H (2013) Ammonia synthesis catalysts: innovation and practice. Chemical Industry Press & World Scientific, SingaporeCrossRefGoogle Scholar
  7. 7.
    Allen AD, Senoff CV (1965) Chem Commun 24:621–622Google Scholar
  8. 8.
    Chatt J, Dilworth JR, Richards RL (1978) Chem Rev 78:589–625CrossRefGoogle Scholar
  9. 9.
    Hidai M, Mizobe Y (1995) Chem Rev 95:1115–1133CrossRefGoogle Scholar
  10. 10.
    MacKay BA, Fryzuk MD (2004) Chem Rev 104:385–401CrossRefGoogle Scholar
  11. 11.
    Nishibayashi Y (2012) Dalton Trans 41:7447–7453CrossRefGoogle Scholar
  12. 12.
    Tanabe Y, Nishibayashi Y (2013) Coord Chem Rev 257:2551–2564CrossRefGoogle Scholar
  13. 13.
    Nishibayashi Y (2015) Inorg Chem 54:9234–9247CrossRefGoogle Scholar
  14. 14.
    Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Eur J Inorg Chem 567–598Google Scholar
  15. 15.
    Tanaka H, Nishibayashi Y, Yoshizawa K (2016) Acc Chem Res 49:987–995CrossRefGoogle Scholar
  16. 16.
    Yandulov DV, Schrock RR (2003) Science 301:76–78CrossRefGoogle Scholar
  17. 17.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120–125CrossRefGoogle Scholar
  18. 18.
    Anderson JS, Rittle J, Peters JC (2013) Nature 501:84–87CrossRefGoogle Scholar
  19. 19.
    Del Castillo TJ, Thompson NB, Peters JC (2016) J Am Chem Soc 138:5341–5350CrossRefGoogle Scholar
  20. 20.
    Ung G, Peters JC (2015) Angew Chem Int Ed 54:532–535Google Scholar
  21. 21.
    Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) J Am Chem Soc 137:5666–5669CrossRefGoogle Scholar
  22. 22.
    Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181CrossRefGoogle Scholar
  23. 23.
    Del Castillo TJ, Thompson NB, Suess DLM, Ung G, Peters JC (2015) Inorg Chem 54:9256–9262CrossRefGoogle Scholar
  24. 24.
    Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2016) Angew Chem Int Ed 55:14291–14295CrossRefGoogle Scholar
  25. 25.
    Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138:13521–13524CrossRefGoogle Scholar
  26. 26.
    Schrock RR (2008) Angew Chem Int Ed 47:5512–5522CrossRefGoogle Scholar
  27. 27.
    Yandulov DV, Schrock RR (2005) Inorg Chem 44:1103–1117CrossRefGoogle Scholar
  28. 28.
    Kinney RA, McNaughton RL, Chin JM, Schrock RR, Hoffman BM (2011) Inorg Chem 50:418–420CrossRefGoogle Scholar
  29. 29.
    Munisamy T, Schrock RR (2012) Dalton Trans 41:130–137CrossRefGoogle Scholar
  30. 30.
    Cao Z, Zhou Z, Wan H, Zhang Q (2005) Int J Quantum Chem 103:344–353CrossRefGoogle Scholar
  31. 31.
    Studt F, Tuczek F (2005) Angew. Chem Int Ed 44:5639–5642CrossRefGoogle Scholar
  32. 32.
    Magistrato A, Robertazzi A, Carloni P (2007) J Chem Theory Comput 3:1708–1720CrossRefGoogle Scholar
  33. 33.
    Reiher M, Le Guennic B, Kirchner B (2005) Inorg Chem 44:9640–9642CrossRefGoogle Scholar
  34. 34.
    Le Guennic B, Kirchner B, Reiher M (2005) Chem Eur J 11:7448–7460CrossRefGoogle Scholar
  35. 35.
    Schenk S, Le Guennic B, Kirchner B, Reiher M (2008) Inorg Chem 47:3634–3650CrossRefGoogle Scholar
  36. 36.
    Schenk S, Kirchner B, Reiher M (2009) Chem Eur J 15:5073–5082CrossRefGoogle Scholar
  37. 37.
    Schenk S, Reiher M (2009) Inorg Chem 48:1638–1648CrossRefGoogle Scholar
  38. 38.
    Bergeler M, Simm GN, Proppe J, Reiher M (2015) J Chem Theory Comput 11:5712–5722CrossRefGoogle Scholar
  39. 39.
    Tian Y-H, Pierpont AW, Batista ER (2014) Inorg Chem 53:4177–4183CrossRefGoogle Scholar
  40. 40.
    Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y (2014) Nat Commun 5:3737Google Scholar
  41. 41.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55CrossRefGoogle Scholar
  42. 42.
    Reiher M (2002) Inorg Chem 41:6928–6935CrossRefGoogle Scholar
  43. 43.
    Schrock RR (2005) Acc Chem Res 38:955–962CrossRefGoogle Scholar
  44. 44.
    Thimm W, Gradert C, Broda H, Wennmohs F, Neese F, Tuczek F (2015) Inorg Chem 54:9248–9255CrossRefGoogle Scholar
  45. 45.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  46. 46.
    Deeth RJ, Field CN (1994) J Chem Soc Dalton Trans 1943–1948Google Scholar
  47. 47.
    Studt F, Tuczek F (2006) J Comput Chem 27:1278–1291CrossRefGoogle Scholar
  48. 48.
    Tanaka H, Ohsako F, Seino H, Mizobe Y, Yoshizawa K (2010) Inorg Chem 49:2464–2470CrossRefGoogle Scholar
  49. 49.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) J Am Chem Soc 136:9719–9731CrossRefGoogle Scholar
  50. 50.
    Eizawa A, Arashiba K, Tanaka H, Kuriyama S, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2017) Nat Commun 8:14874Google Scholar
  51. 51.
    Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485–496CrossRefGoogle Scholar
  52. 52.
    Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18–29CrossRefGoogle Scholar
  53. 53.
    Ohki Y, Seino H (2016) Dalton Trans 45:874–880CrossRefGoogle Scholar
  54. 54.
    Comas-Vives A, Harvey JN (2011) Eur J Inorg Chem 5025–5035Google Scholar
  55. 55.
    Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753CrossRefGoogle Scholar
  56. 56.
    Mayer I (1983) Chem Phys Lett 97:270–274CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Materials Chemistry and Engineering and IRCCSKyushu UniversityFukuokaJapan

Personalised recommendations