Dinitrogen Fixation by Transition Metal Hydride Complexes

  • Takanori Shima
  • Zhaomin HouEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)


This chapter describes the activation of dinitrogen by various transition metal hydride complexes. A number of mononuclear transition metal hydride complexes can incorporate dinitrogen, but they are usually difficult to induce N–N bond cleavage. In contrast, multimetallic hydride complexes can split and hydrogenate dinitrogen through cooperation of the multiple metal hydrides. In this transformation, the hydride ligands serve as the source of both electron and proton, thus enabling the cleavage and hydrogenation of dinitrogen without extra reducing agents and proton sources. Generally, the reactivity of the metal hydride complexes is significantly influenced by their composition (nuclearity) and metal/ligand combination.


Dinitrogen cleavage Hydride Hydrogenation Multimetallic Nitride 


  1. 1.
    Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  2. 2.
    Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195CrossRefGoogle Scholar
  3. 3.
    Hoffman BM et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062CrossRefGoogle Scholar
  4. 4.
    Hoffman BM et al (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46:587–595CrossRefGoogle Scholar
  5. 5.
    Lukoyanov D et al (2015) Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N2 for H2. J Am Chem Soc 137:3610–3615CrossRefGoogle Scholar
  6. 6.
    Yang ZY et al (2013) On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Proc Natl Acad Sci U S A 110:16327–16332CrossRefGoogle Scholar
  7. 7.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed Engl 47:3524–3535CrossRefGoogle Scholar
  8. 8.
    Honkala K et al (2005) Ammonia synthesis from first-principles calculations. Science 307:555–558CrossRefGoogle Scholar
  9. 9.
    Ertl G (1980) Surface science and catalysis – studies on the mechanism of ammonia synthesis: the P.H. Emmett award address. Catal Rev Sci Eng 21:201–223CrossRefGoogle Scholar
  10. 10.
    Rodriguez MM et al (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783CrossRefGoogle Scholar
  11. 11.
    Logadóttir Á, Nørskov JK (2003) Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. J Catal 220:273–779CrossRefGoogle Scholar
  12. 12.
    Walter MD (2016) Recent advances in transition metal-catalyzed dinitrogen activation. Adv Organomet Chem 65:261–377CrossRefGoogle Scholar
  13. 13.
    Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78CrossRefGoogle Scholar
  14. 14.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125CrossRefGoogle Scholar
  15. 15.
    Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501:84–87CrossRefGoogle Scholar
  16. 16.
    Ballmann J, Munhá RF, Fryzuk MD (2010) The hydride route to the preparation of dinitrogen complexes. Chem Commun 46:1013–1025CrossRefGoogle Scholar
  17. 17.
    Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun (London) 621–622Google Scholar
  18. 18.
    Yamamoto A et al (1967) Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine)cobalt complex co-ordinated with molecular nitrogen. Chem Commun (London) 79–80Google Scholar
  19. 19.
    Yamamoto A et al (1967) Reversible combination of molecular nitrogen with a cobalt complex. Exchange reactions of nitrogen–tris(tripheny1phosphine)cobalt with hydrogen, ethylene, and ammonia. J Am Chem Soc 89:3071CrossRefGoogle Scholar
  20. 20.
    Sacco A, Rossi M (1967) Hydride and nitrogen complexes of cobalt. Chem Commun (London) 316Google Scholar
  21. 21.
    Yamamoto A et al (1983) Preparation, X-ray molecular structure determination, and chemical properties of dinitrogen-coordinated cobalt complexes containing triphenylphosphine ligands and alkali metal or magnesium. Protonation of the coordinated dinitrogen to ammonia and hydrazine. Organometallics 2:1429–1436CrossRefGoogle Scholar
  22. 22.
    Yoshida T et al (1979) Preparations and reactions of some hydridodinitrogentrialkylphosphine complexes of rhodium(I). The structure of a dinitrogen-bridged rhodium(I) dimer, [RhH(P(i-Pr)3)2]2(μ-N2). J Organomet Chem 181:183–201CrossRefGoogle Scholar
  23. 23.
    Yoshida T, Okano T, Otsuka S (1978) Novel three-co-ordinate rhodium(I) hydrido-compounds, [RhH(PBut 3)2] and [RhH{P(cyclohexyl)3}2]. J Chem Soc Chem Commun 855–856Google Scholar
  24. 24.
    Sacco A, Aresta M (1968) Nitrogen fixation: hydrido- and hydrido-nitrogen-complexes of iron(II). Chem Commun (London) 1223–1224Google Scholar
  25. 25.
    Aresta M et al (1971) Hydrido-complexes of iron(IV) and iron(II). Inorg Chim Acta 5:115–118CrossRefGoogle Scholar
  26. 26.
    Aresta M et al (1971) Nitrogen fixation. II. Dinitrogen-complexes of iron. Inorg Chim Acta 5:203–206CrossRefGoogle Scholar
  27. 27.
    Van Der Sluys LS et al (1990) An attractive “cis-effect” of hydride on neighbor ligands: experimental and theoretical studies on the structure and intramolecular rearrangements of Fe(H)22-H2)(PEtPh2)3. J Am Chem Soc 112:4831–4841CrossRefGoogle Scholar
  28. 28.
    Hallman PS, McGarvey BR, Wilkinson G (1968) The preparation and reactions of hydridochlorotris(triphenylphosphine)ruthenium(II) including homogeneous catalytic hydrogenation of alk-1-enes. J Chem Soc A 3143–3150Google Scholar
  29. 29.
    Knoth WH (1972) Dihydrido(dinitrogen)tris(triphenylphosphine)ruthenium. Dinitrogen bridging ruthenium and boron. J Am Chem Soc 94:104–109CrossRefGoogle Scholar
  30. 30.
    Yamamoto A, Kitazume S, Ikeda S (1968) Triphenylphosphine complexes of ruthenium and rhodium. Reversible combinations of molecular nitrogen and hydrogen with the ruthenium complex. J Am Chem Soc 90:1089–1090CrossRefGoogle Scholar
  31. 31.
    Abdur-Rashid K et al (2000) Synthesis and characterization of RuH2(H2)2(PiPr3)2 and related chemistry. Evidence for a bis(dihydrogen) structure. Organometallics 19:1652–1660CrossRefGoogle Scholar
  32. 32.
    Prechtl MHG et al (2007) Synthesis and characterisation of nonclassical ruthenium hydride complexes containing chelating bidentate and tridentate phosphine ligands. Chem A Eur J 13:1539–1546CrossRefGoogle Scholar
  33. 33.
    Tenorio MJ et al (1997) Hydride, dihydrogen, dinitrogen and related complexes of ruthenium containing the ligand hydrotris(pyrazolyl)borate. X-ray crystal structure of [{HB(pz)3}Ru(η2-H2)(dippe)][BPh4] (dippe = 1,2-bis(diisopropylphosphino)ethane). Inorg Chim Acta 259:77–84CrossRefGoogle Scholar
  34. 34.
    Hills A et al (1990) Complexes of tertiary phosphines with iron(II) and dinitrogen, dihydrogen, and other small molecules. J Organomet Chem 391:C41–C44CrossRefGoogle Scholar
  35. 35.
    Leigh GJ, Jimenez-Tenorio M (1991) Exchange of dinitrogen between iron and molybdenum centers and the reduction of dinitrogen bound to iron: implications for the chemistry of nitrogenases. J Am Chem Soc 113:5862–5863CrossRefGoogle Scholar
  36. 36.
    Hills A et al (1993) Bis[1,2-bis(dimethylphosphino)ethane]dihydrogenhydridoiron(II) tetraphenylborate as a model for the function of nitrogenases. J Chem Soc Dalton Trans 3041–3049Google Scholar
  37. 37.
    Hall DA, Leigh GJ (1996) Reduction of dinitrogen bound at an iron(0) centre. J Chem Soc Dalton Trans 3539–3541Google Scholar
  38. 38.
    Gilbertson JD, Szymczak NK, Tyler DR (2004) H2 activation in aqueous solution: formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the heterolysis of H2 in water. Inorg Chem 43:3341–3343CrossRefGoogle Scholar
  39. 39.
    Gilbertson JD, Szymczak NK, Tyler DR (2005) Reduction of N2 to ammonia and hydrazine utilizing H2 as the reductant. J Am Chem Soc 127:10184–10185CrossRefGoogle Scholar
  40. 40.
    Girolami GS et al (1985) Alkyl, hydrido, and tetrahydroaluminato complexes of manganese with 1,2-bis(dimethylphosphino)ethane (dmpe). X-ray crystal structures of Mn2(μ-C6H11)2(C6H11)2(μ-dmpe), (dmpe)2Mn(μ-H)2AlH(μ-H)2AlH(μ-H)2Mn(dmpe)2, and Li4{MnH(C2H4)[CH2(Me)PCH2CH2PMe2]2}2·2Et2O. J Chem Soc Dalton Trans 921–929Google Scholar
  41. 41.
    Perthuisot C, Fan M, Jones WD (1992) Catalytic thermal C–H activation with manganese complexes: evidence for η2-H2 coordination in a neutral manganese complex and its role in C–H activation. Organometallics 11:3622–3629CrossRefGoogle Scholar
  42. 42.
    Merwin RK et al (2004) Synthesis and characterization of CpMn(dfepe)(L) complexes (dfepe = (C2F5)2PCH2CH2P(C2F5)2; L = CO, H2, N2): an unusual example of a dihydride to dihydrogen photochemical conversion. Polyhedron 23:2873–2878CrossRefGoogle Scholar
  43. 43.
    Ginsberg AP (1968) Nine-co-ordinate octahydrido(tertiary phosphine)rhenate complex anions. Chem Commun (London) 857–858Google Scholar
  44. 44.
    Tully ME, Ginsberg AP (1973) trans-Hydridodinitrogenbis-[1,2-bis(diphenylphosphino)ethane]rhenium(I). J Am Chem Soc 95:2042–2044CrossRefGoogle Scholar
  45. 45.
    Bradley MG, Roberts DA, Geoffrey GL (1981) Photogeneration of reactive [ReH(diphos)2]. Its reversible coordination of CO2 and activation of aromatic C-H bonds. J Am Chem Soc 103:379–384CrossRefGoogle Scholar
  46. 46.
    Pennella F (1971) Tetrahydrido-complexes of molybdenum. Chem Commun 158Google Scholar
  47. 47.
    Bell B et al (1972) Group VI tetrahydrides and stereochemical non-rigidity. J Chem Soc Chem Commun 34–35Google Scholar
  48. 48.
    Pierantozzi R, Geoffrey GL (1980) Photoinduced elimination of H2 from [MoH4(diphos)2] and [MoH4(PPh2Me)4]. Inorg Chem 19:1821–1822CrossRefGoogle Scholar
  49. 49.
    Dzięgielewski JO, Grzybek R (1990) Application of the molybdenum(IV) hydride complexes in cyclohexane solutions to the radiation-catalytic reduction of molecular nitrogen. Polyhedron 9:645–651CrossRefGoogle Scholar
  50. 50.
    Dzięgielewski JO, Małecki J, Grzybek R (1991) Radiation-catalytic reduction of molecular nitrogen with application of the tungsten(IV) hydride complexes. Polyhedron 10:1007–1012CrossRefGoogle Scholar
  51. 51.
    Dzięgielewski JO, Małecki J (1991) The cyclic fixation and reduction of molecular nitrogen with [WH4(Ph2PCH2CH2PPh2)2] in γ-irradiated solutions. Polyhedron 10:2827–2832CrossRefGoogle Scholar
  52. 52.
    Hidai M, Tominari K, Uchida Y (1972) Preparation and properties of dinitrogen–molybdenum complexes. J Am Chem Soc 94:110–114CrossRefGoogle Scholar
  53. 53.
    Archer LJ, George TA (1979) Reactions of coordinated dinitrogen. 6. Displacement of coordinated dinitrogen by dihydrogen in low-valent molybdenum complexes. Inorg Chem 18:2079–2082CrossRefGoogle Scholar
  54. 54.
    Green MLH, Silverthorn WE (1971) Arene molybdenum chemistry: some π-allyl, hydrido, and dinitrogen derivatives. Chem Commun 557–558Google Scholar
  55. 55.
    Nishibayashi Y, Iwai S, Hidai M (1998) Bimetallic system for nitrogen fixation: ruthenium-assisted protonation of coordinated N2 on tungsten with H2. Science 279:540–542CrossRefGoogle Scholar
  56. 56.
    Avenier P et al (2007) Dinitrogen dissociation on an isolated surface tantalum atom. Science 317:1056–1060CrossRefGoogle Scholar
  57. 57.
    Vol’pin ME, Shur VB (1966) Nitrogen fixation by transition metal complexes. Nature 209:1236CrossRefGoogle Scholar
  58. 58.
    Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metal-hydride bonds. I. The formation of dimeric dicyclopentadienyltitanium(III) hydride as an intermediate in the Vol’pin-Shur nitrogen-fixing system. J Am Chem Soc 88:4305–4307CrossRefGoogle Scholar
  59. 59.
    Brintzinger H (1966) Formation of ammonia by insertion of molecular nitrogen into metal-hydride bonds. II. Di-μ-imido-bis(dicyclopentadienyltitanium(III)) as a product of the reaction between di-μ-hydrido-bis(dicyclopentadienyltitanium(III)) and molecular nitrogen. J Am Chem Soc 88:4307–4308CrossRefGoogle Scholar
  60. 60.
    Bercaw JE (1974) Bis(pentamethylcyclopentadienyl)titanium(II) and its complexes with molecular nitrogen. J Am Chem Soc 96:5087–5095CrossRefGoogle Scholar
  61. 61.
    Sanner RD et al (1976) Structure and magnetism of μ-dinitrogen-bis(bis(pentamethylcyclopentadienyl)titanium(II)), {(η5-C5(CH3)5)2Ti}2N2. J Am Chem Soc 98:8358–8365CrossRefGoogle Scholar
  62. 62.
    de Wolf JM et al (1996) Bis(tetramethylcyclopentadienyl)titanium chemistry. Molecular structures of [(C5HMe4)(μ-η15-C5Me4)Ti]2 and [(C5HMe4)2Ti]2N2. Organometallics 15:4977–4983CrossRefGoogle Scholar
  63. 63.
    MacLachlan EA, Fryzuk MD (2006) Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25:1530–1543CrossRefGoogle Scholar
  64. 64.
    Pool JA, Lobkovsky E, Chirik PJ (2004) Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427:527–530CrossRefGoogle Scholar
  65. 65.
    Hanna TE et al (2007) Bis(cyclopentadienyl) titanium dinitrogen chemistry: synthesis and characterization of a side-on bound haptomer. Organometallics 26:2431–2438CrossRefGoogle Scholar
  66. 66.
    Chirik PJ, Henling LM, Bercaw JE (2001) Synthesis of singly and doubly bridged ansa-zirconocene hydrides. Formation of an unusual mixed valence trimeric hydride by reaction of H2 with {(Me2Si)25-C5H3)2}Zr(CH3)2 and generation of a dinitrogen complex by reaction of N2 with a zirconocene dihydride. Organometallics 20:534–544CrossRefGoogle Scholar
  67. 67.
    Manriquez JM et al (1978) Reduction of carbon monoxide promoted by alkyl and hydride derivatives of permethylzirconocene. J Am Chem Soc 100:2716–2724CrossRefGoogle Scholar
  68. 68.
    Zhang S et al (2016) A dinitrogen dicopper(I) complex via a mixed-valence dicopper hydride. Angew Chem Int Ed Engl 55:9927–9931CrossRefGoogle Scholar
  69. 69.
    Smith JM et al (2006) Studies of low-coordinate iron dinitrogen complexes. J Am Chem Soc 128:756–769CrossRefGoogle Scholar
  70. 70.
    Yu Y et al (2008) The reactivity patterns of low-coordinate iron–hydride complexes. J Am Chem Soc 130:6624–6638CrossRefGoogle Scholar
  71. 71.
    Ding K, Brennessel WW, Holland PL (2009) Three-coordinate and four-coordinate cobalt hydride complexes that react with dinitrogen. J Am Chem Soc 131:10804–10805CrossRefGoogle Scholar
  72. 72.
    Pfirrmann S et al (2009) A dinuclear nickel(I) dinitrogen complex and its reduction in single-electron steps. Angew Chem Int Ed Engl 48:3357–3361CrossRefGoogle Scholar
  73. 73.
    Pfirrmann S et al (2009) β-Diketiminato nickel(I) complexes with very weak ligation allowing for H2 and N2 activation. Organometallics 28:6855–6860CrossRefGoogle Scholar
  74. 74.
    Fryzuk MD et al (1997) Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275:1445–1447CrossRefGoogle Scholar
  75. 75.
    Basch H, Musaev DG, Morokuma K (2000) Can the binuclear dinitrogen complex [P2N2]Zr(μ-η2-N2)Zr[P2N2] activate more than one hydrogen molecule? A theoretical study. Organometallics 19:3393–3403CrossRefGoogle Scholar
  76. 76.
    Pool JA, Bernskoetter WH, Chirik PJ (2004) On the origin of dinitrogen hydrogenation promoted by [(η5-C5Me4H)2Zr]2222-N2). J Am Chem Soc 126:14326–14327CrossRefGoogle Scholar
  77. 77.
    Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) Kinetics and mechanism of N2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C–H bond. J Am Chem Soc 127:14051–14061CrossRefGoogle Scholar
  78. 78.
    Fryzuk MD, Johnson SA, Retting SJ (1998) New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J Am Chem Soc 120:11024–11025CrossRefGoogle Scholar
  79. 79.
    Fryzuk MD (2009) Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc Chem Res 42:127–133CrossRefGoogle Scholar
  80. 80.
    Fryzuk MD, MacKay BA, Patrick BO (2003) Hydrosilylation of a dinuclear tantalum dinitrogen complex: cleavage of N2 and functionalization of both nitrogen atoms. J Am Chem Soc 125:3234–3235CrossRefGoogle Scholar
  81. 81.
    MacKay BA, Patrick BO, Fryzuk MD (2005) Hydroalumination of a dinuclear tantalum dinitrogen complex: N–N bond cleavage and ancillary ligand rearrangement. Organometallics 24:3836–3841CrossRefGoogle Scholar
  82. 82.
    Fryzuk MD et al (2002) Hydroboration of coordinated dinitrogen: a new reaction for the N2 ligand that results in its functionalization and cleavage. Angew Chem Int Ed Engl 41:3709–3712CrossRefGoogle Scholar
  83. 83.
    Akagi F, Matsuo T, Kawaguchi H (2007) Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew Chem Int Ed Engl 46:8778–8781CrossRefGoogle Scholar
  84. 84.
    Akagi F et al (2013) Reactions of a niobium nitride complex prepared from dinitrogen: synthesis of imide and ureate complexes and ammonia formation. Eur J Inorg Chem 3930–3936Google Scholar
  85. 85.
    Shima T et al (2013) Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340:1549–1552CrossRefGoogle Scholar
  86. 86.
    Hu S, Shima T, Hou Z (2014) Carbon–carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride. Nature 512:413–415CrossRefGoogle Scholar
  87. 87.
    Guru MM, Shima T, Hou Z (2016) Conversion of dinitrogen to nitriles at a multinuclear titanium framework. Angew Chem Int Ed Engl 55:12316–12320CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource ScienceRIKENSaitamaJapan

Personalised recommendations