Advertisement

CO2 Reduction Reactions by Rhodium-Based Catalysts

  • Danilo Bonincontro
  • Elsje Alessandra QuadrelliEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 61)

Abstract

Reduction reactions of CO2 using chemicals obtained from renewable energy sources (as for example, dihydrogen obtained using renewable-issued electricity) or using directly renewable energy sources can contribute to store and use renewable energies in our current infrastructures. Rh-based catalysts have been playing a key role in the field of CO2 reduction. From its very first application as homogeneous catalyst to now, several Rh-based catalytic systems have been successfully tested. This chapter gives the reader an overview as well as a mechanistic insight where possible into the Rh-catalysed CO2 reduction reductions: production of formic acid and higher carboxylic acids with homogeneous catalysts, methane, CO and various oxygenated compounds via heterogeneous catalysis, and various products by means of electro- and photocatalysis.

Keywords

Carbon dioxide Electrocatalysis Formic acid Heterogeneous catalysis Homogenous catalysis Mechanism Photocatalysis Rhodium 

Notes

Acknowledgments

DB and EAQ gratefully acknowledge the SINCHEM Joint Doctorate program selected under the Erasmus Mundus Action 1 Program – FPA 2013–0037. EAQ acknowledges support from French CNRS, University Claude Bernard Lyon and CPE Lyon. DB thanks Fondazione “Toso Montanari” from Bologna (Italy).

References

  1. 1.
    Lawrence Livermore National Laboratory. https://flowcharts.llnl.gov/content/assets/images/charts/Energy/ENERGY_2011_WORLD.png. Accessed 26 June 2016
  2. 2.
    International Energy Agency (2015) World Energy Outlook 2015Google Scholar
  3. 3.
    International Energy Agency. http://www.iea.org/publications/scenariosandprojections/. Accessed 29 June 2016
  4. 4.
    DePaolo DJ, Cole DR (2013) Geochemistry of geologic carbon sequestration: an overview. Rev Mineralogy Geochem 77(1):1–14CrossRefGoogle Scholar
  5. 5.
    Aresta M, Dibenedetto A, Quaranta E (2016) J Catalysis. http://dx.doi.org/10.1016/j.jcat.2016.04.003
  6. 6.
    Liu Q, Wu L, Jackstell R, Beller M. Using carbon dioxide as a building block in organic synthesisGoogle Scholar
  7. 7.
    Styring P, Armstrong K, Quadrelli EA (eds) (2014) Carbon dioxide utilisation: closing the carbon cycle, 1st ed. Elsevier, Amsterdam, ISBN: 978-0-444-62746-9, 311 ppGoogle Scholar
  8. 8.
    Quadrelli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4(9):1194–1215CrossRefGoogle Scholar
  9. 9.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRefGoogle Scholar
  10. 10.
    Klankermayer J, Leitner W (2016) Harnessing renewable energy with CO2 for the chemical value chain: challenges and opportunities for catalysis. Philos Trans A Math Phys Eng Sci 374(2016)Google Scholar
  11. 11.
    Dechema Gesellschaft für Chemische Technik und Biotechnologie e. V International Energy Agency (IEA) and International Council of Chemical Associations (ICCA) Technology Roadmap. https://www.iea.org/publications/freepublications/publication/Chemical_Roadmap_2013_Final_WEB.pdf. Accessed 24 June
  12. 12.
    Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H (2000) Formic acid. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  13. 13.
    Joó F (2008) Breakthroughs in hydrogen storage—formic acid as a sustainable storage material for hydrogen. ChemSusChem 1(10):805–808CrossRefGoogle Scholar
  14. 14.
    Loges B, Boddien A, Junge H, Beller M (2008) Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angew Chem Int Ed 47(21):3962–3965CrossRefGoogle Scholar
  15. 15.
    Fellay C, Dyson PJ, Laurenczy G (2008) A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed 47(21):3966–3968CrossRefGoogle Scholar
  16. 16.
    Inoue Y, Izumida H, Sasaki Y, Hashimoto H (1976) Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem Lett 5(8):863–864CrossRefGoogle Scholar
  17. 17.
    Ezhova NN, Kolesnichenko NV, Bulygin AV, Slivinskii EV, Han S (2002) Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex. Russ Chem Bull 51(12):2165–2169CrossRefGoogle Scholar
  18. 18.
    Leitner W, Dinjus E, Gaßner F (1994) Activation of carbon dioxide. J Organomet Chem 475(1):257–266CrossRefGoogle Scholar
  19. 19.
    Fornika R, Gorls H, Seemann B, Leitner W (1995) Complexes [(P2)Rh(hfacac)](P2 = bidentate chelating phosphane, hfacac = hexafluoroacetylacetonate) as catalysts for CO2 hydrogenation: correlations between solid state structures, 103Rh NMR shifts and catalytic activities. J Chem Soc Chem Commun (14):1479–1481Google Scholar
  20. 20.
    Angermund K, Baumann W, Dinjus E, Fornika R, Görls H, Kessler M, Krüger C, Leitner W, Lutz F (1997) Complexes [(P2)Rh(hfacac)] as model compounds for the fragment [(P2)Rh] and as highly active catalysts for CO2 hydrogenation: the accessible molecular surface (AMS) model as an approach to quantifying the intrinsic steric properties of chelating ligands in homogeneous catalysis. Chem Eur J 3(5):755–764CrossRefGoogle Scholar
  21. 21.
    Gassner F, Leitner W (1993) Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalysts. J Chem Soc Chem Commun (19):1465–1466Google Scholar
  22. 22.
    Jessop PG, Joó F, Tai C-C (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248(21–24):2425–2442CrossRefGoogle Scholar
  23. 23.
    Musashi Y, Sakaki S (2002) Theoretical study of Rhodium(III)-catalyzed hydrogenation of carbon dioxide into formic acid. Significant differences in reactivity among Rhodium(III), Rhodium(I), and Ruthenium(II) complexes. J Am Chem Soc 124(25):7588–7603CrossRefGoogle Scholar
  24. 24.
    Li Y-N, He L-N, Lang X-D, Liu X-F, Zhang S (2014) An integrated process of CO2 capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Adv 4(91):49995–50002CrossRefGoogle Scholar
  25. 25.
    Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387CrossRefGoogle Scholar
  26. 26.
    Ukai K, Aoki M, Takaya J, Iwasawa N (2006) Rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters with CO2. J Am Chem Soc 128(27):8706–8707CrossRefGoogle Scholar
  27. 27.
    Mizuno H, Takaya J, Iwasawa N (2011) Rhodium(I)-catalyzed direct carboxylation of arenes with CO2 via chelation-assisted C–H bond activation. J Am Chem Soc 133(5):1251–1253CrossRefGoogle Scholar
  28. 28.
    Suga T, Mizuno H, Takaya J, Iwasawa N (2014) Direct carboxylation of simple arenes with CO2 through a rhodium-catalyzed C–H bond activation. Chem Commun 50(92):14360–14363CrossRefGoogle Scholar
  29. 29.
    Kawashima S, Aikawa K, Mikami K (2016) Rhodium-catalyzed hydrocarboxylation of olefins with carbon dioxide. Eur J Org ChemGoogle Scholar
  30. 30.
    Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Carbon dioxide as a C1 building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew Chem Int Ed 52(46):12119–12123CrossRefGoogle Scholar
  31. 31.
    Maitlis PM, Haynes A, Sunley GJ, Howard MJ (1996) Methanol carbonylation revisited: thirty years on. J Chem Soc Dalton Trans (11):2187–2196Google Scholar
  32. 32.
    Gian Paolo Chiusoli PMM (2006) Metal-catalysis in industrial organic processesGoogle Scholar
  33. 33.
    Qian Q, Zhang J, Cui M, Han B (2016) Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nat Commun 7Google Scholar
  34. 34.
    Wu L, Liu Q, Jackstell R, Beller M (2014) Carbonylations of alkenes with CO surrogates. Angew Chem Int Ed 53(25):6310–6320CrossRefGoogle Scholar
  35. 35.
    Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17(5):2647–2663Google Scholar
  36. 36.
    Wei W, Jinlong G (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5(1):2–10CrossRefGoogle Scholar
  37. 37.
    Solymosi F, Erdöhelyi A, Bánsági T (1981) Methanation of CO2 on supported rhodium catalyst. J Catal 68(2):371–382Google Scholar
  38. 38.
    Ruiz P, Jacquemin M, Blangenois N (2010) Catalytic CO2 methanation process. Google PatentsGoogle Scholar
  39. 39.
    Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P (2012) Methanation of CO2: further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl Catal B Environ 113–114:2–10CrossRefGoogle Scholar
  40. 40.
    Karelovic A, Ruiz P (2013) Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J Catal 301:141–153CrossRefGoogle Scholar
  41. 41.
    Jacquemin M, Beuls A, Ruiz P (2010) Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal Today 157(1–4):462–466CrossRefGoogle Scholar
  42. 42.
    Karelovic A, Ruiz P (2012) CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism. Appl Catal Environ 113–114:237–249CrossRefGoogle Scholar
  43. 43.
    Ichikawa S (1995) Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis. Energy Conversion Manag 36(6–9):613–616CrossRefGoogle Scholar
  44. 44.
    Karelovic A, Ruiz P (2013) Improving the hydrogenation function of Pd/γ-Al2O3 catalyst by Rh/γ-Al2O3 addition in CO2 methanation at low temperature. ACS Catal 3(12):2799–2812CrossRefGoogle Scholar
  45. 45.
    Swalus C, Jacquemin M, Poleunis C, Bertrand P, Ruiz P (2012) CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: “In situ” supply of hydrogen by Ni/activated carbon catalyst. Appl Catal Environ 125:41–50CrossRefGoogle Scholar
  46. 46.
    Aziz MAA, Jalil AA, Triwahyono S, Sidik SM (2014) Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles. Appl Catal Gen 486:115–122CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Zhan X, Zheng X, Wang Z, Fang Z, Xue Y, Tao L (2015) Liquid catalyst for methanation of carbon dioxide. US 20150126626Google Scholar
  48. 48.
    Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43(22):7813–7837CrossRefGoogle Scholar
  49. 49.
    Havran V, Duduković MP, Lo CS (2011) Conversion of methane and carbon dioxide to higher value products. Ind Eng Chem Res 50(12):7089–7100CrossRefGoogle Scholar
  50. 50.
    Richardson JT, Paripatyadar SA (1990) Carbon dioxide reforming of methane with supported rhodium. Appl Catal 61(1):293–309CrossRefGoogle Scholar
  51. 51.
    Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts: I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics. J Catal 158(1):51–63Google Scholar
  52. 52.
    Wang HY, Ruckenstein E (2000) Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support. Appl Catal A Gen 204(1):143–152CrossRefGoogle Scholar
  53. 53.
    Asencios YJO, Assaf EM (2013) Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: effect of nickel content. Fuel Process Technol 106:247–252CrossRefGoogle Scholar
  54. 54.
    Jóźwiak WK, Nowosielska M, Rynkowski J (2005) Reforming of methane with carbon dioxide over supported bimetallic catalysts containing Ni and noble metal: I. Characterization and activity of SiO2 supported Ni–Rh catalysts. Appl Catal Gen 280(2):233–244CrossRefGoogle Scholar
  55. 55.
    Estephane J, Ayoub M, Safieh K, Kaydouh M-N, Casale S, Zakhem HE (2015) CO2 reforming of CH4 over highly active and stable yRhNix/NaY catalysts. Comptes Rendus Chimie 18(3):277–282CrossRefGoogle Scholar
  56. 56.
    Basile F, Fornasari G, Poluzzi E, Vaccari A (1998) Catalytic partial oxidation and CO2-reforming on Rh- and Ni-based catalysts obtained from hydrotalcite-type precursors. Appl Clay Sci 13(5–6):329–345CrossRefGoogle Scholar
  57. 57.
    Pakhare D, Wu H, Narendra S, Abdelsayed V, Haynes D, Shekhawat D, Berry D, Spivey J (2013) Characterization and activity study of the Rh-substituted pyrochlores for CO2 (dry) reforming of CH4. Appl Petrochem Res 3(3–4):117–129CrossRefGoogle Scholar
  58. 58.
    Kusama H, Okabe K, Sayama K, Arakawa H (1996) CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts. Catal Today 28(3):261–266CrossRefGoogle Scholar
  59. 59.
    Kusama H, Okabe K, Sayama K, Arakawa H (1997) Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts. Energy 22(2–3):343–348CrossRefGoogle Scholar
  60. 60.
    Ikehara N, Hara K, Satsuma A, Hattori T, Murakami Y (1994) Unique temperature dependence of acetic acid formation in CO2 hydrogenation on Ag-promoted Rh/SiO2 catalyst. Chem Lett 23(2):263–264CrossRefGoogle Scholar
  61. 61.
    Ding Y-H, Huang W, Wang Y-G (2007) Direct synthesis of acetic acid from CH4 and CO2 by a step-wise route over Pd/SiO2 and Rh/SiO2 catalysts. Fuel Process Technol 88(4):319–324CrossRefGoogle Scholar
  62. 62.
    Quadrelli EA (2016) 25 years of energy and green chemistry: saving, storing, distributing and using energy responsibly. Green Chem 18(2):328–330CrossRefGoogle Scholar
  63. 63.
    Bolinger CM, Story N, Sullivan BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2′-bipyridine complexes of rhodium and iridium. Inorg Chem 27(25):4582–4587Google Scholar
  64. 64.
    Caix C, Chardon-Noblat S, Deronzier A (1997) Electrocatalytic reduction of CO2 into formate with [(η5-Me5C5)M(L)Cl] + complexes (L = 2,2′-bipyridine ligands; M = Rh(III) and Ir(III)). J Electroanal Chem 434(1–2):163–170CrossRefGoogle Scholar
  65. 65.
    Kushi Y, Nagao H, Nishioka T, Isobe K, Tanaka K (1994) Oxalate formation in electrochemical CO2 reduction catalyzed by rhodium-sulfur cluster. Chem Lett 23(11):2175–2178CrossRefGoogle Scholar
  66. 66.
    Rasko J, Solymosi F (1994) Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J Phys Chem 98(29):7147–7152CrossRefGoogle Scholar
  67. 67.
    Solymosi F, Tombácz I (1994) Photocatalytic reaction of H2O + CO2 over pure and doped Rh/TiO2. Catal Lett 27(1):61–65CrossRefGoogle Scholar
  68. 68.
    Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A Chem 126(1–3):117–123CrossRefGoogle Scholar
  69. 69.
    Kohno Y, Yamamoto T, Tanaka T, Funabiki T (2001) Photoenhanced reduction of CO2 by H2 over Rh/TiO2: characterization of supported Rh species by means of infrared and X-ray absorption spectroscopy. J Mol Catal A Chem 175(1–2):173–178CrossRefGoogle Scholar
  70. 70.
    Lee C-W, Antoniou Kourounioti R, Wu JCS, Murchie E, Maroto-Valer M, Jensen OE, Huang C-W, Ruban A (2014) Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. J CO2 Utilization 5:33–40Google Scholar
  71. 71.
    Liu J-Y, Garg B, Ling Y-C (2011) CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1.32Cr0.66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH. Green Chem 13(8):2029–2031CrossRefGoogle Scholar
  72. 72.
    Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. ChemSusChem 8(4):603–608CrossRefGoogle Scholar
  73. 73.
    Centi G, Perathoner S (2000) Artificial leaves. In: Kirk-Othmer encyclopedia of chemical technology. WileyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Danilo Bonincontro
    • 1
    • 2
  • Elsje Alessandra Quadrelli
    • 1
    Email author
  1. 1.Université de Lyon, C2P2, UMR 5265, CNRS – Univeristé de Lyon1 UCBL – CPE LyonVilleurbanneFrance
  2. 2.Dipartimento di Chimica Industriale “Toso Montanari”BolognaItaly

Personalised recommendations