Functionalization of N2 by Mid to Late Transition Metals via N–N Bond Cleavage

  • Isabel Klopsch
  • Ekaterina Yu Yuzik-Klimova
  • Sven SchneiderEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)


This review focuses on the recent efforts to functionalize dinitrogen via complete cleavage of the N≡N bond with particular emphasis on mid to late transition metal complexes. The relationships of electronic and structural parameters for the most common N2-bonding modes (end-on and side-on bridging) with N2-splitting reactivity are discussed. This analysis points towards electronic configurations with π10 (end-on) and π8δ2 (side-on) electrons within the M2N2-cores for full N–N bond cleavage into terminal and bridging nitride complexes, respectively. The full body of work on N2-splitting with group 6–8 metals is comprehensively presented. Ligand electronic and steric effects are discussed in detail for privileged platforms, such as low coordinate, electron rich complexes with π-donating ligands. Finally, several strategies for functionalization of the nitrides resulting from N2-splitting are presented that lead to N–C bond formation. The developed pseudo-catalytic cycles reported so far that combine N2-cleavage, nitride functionalization, and N-transfer provide guidelines for rational catalyst design.


Bonding Dinitrogen splitting Nitrogen fixation Transition metal nitrides 


  1. 1.
    Hoffman BM, Dean DR, Seefeldt LC (2009) Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc Chem Res 42:609–619. doi: 10.1021/ar8002128 CrossRefGoogle Scholar
  2. 2.
    Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062. doi: 10.1021/cr400641x CrossRefGoogle Scholar
  3. 3.
    Haber F (1910) Über die Darstellung des Ammoniaks aus Stickstoff und Wasserstoff. Z Elektrochem Angew Phys Chem 16:244–246. doi: 10.1002/bbpc.19100160709 CrossRefGoogle Scholar
  4. 4.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed 47:3524–3535. doi: 10.1002/anie.200800480 CrossRefGoogle Scholar
  5. 5.
    Bezdek MJ, Chirik PJ (2016) Expanding boundaries: N2 cleavage and functionalization beyond early transition metals. Angew Chem Int Ed 55:7892–7896. doi: 10.1002/anie.201603142 CrossRefGoogle Scholar
  6. 6.
    Yandulov DV, Schrock RR (2003) Catalytic reduction of dintrogen to ammonia at a single molybdenum center. Science 301:76–78. doi: 10.1126/science.1085326 CrossRefGoogle Scholar
  7. 7.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125. doi: 10.1038/nchem.906 CrossRefGoogle Scholar
  8. 8.
    Anderson JS, Rittle J, Peters JC (2013) Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501:84–87. doi: 10.1038/nature12435 CrossRefGoogle Scholar
  9. 9.
    van der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 43:5183–5191. doi: 10.1039/c4cs00085d CrossRefGoogle Scholar
  10. 10.
    Ali M, Zhou F, Chen K, Kotzur C, Xiao C, Bourgeois L, Zhang X, MacFarlane DR (2016) Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat Commun 7:11335. doi: 10.1038/ncomms11335 CrossRefGoogle Scholar
  11. 11.
    Smith JM (2014) Reactive transition metal nitride complexes. In: Karlin KD (ed) Progress in inorganic chemistry, vol 58. Wiley, Hoboken, pp 417–470. doi:  10.1002/9781118792797.ch06
  12. 12.
    Hidai M (1999) Chemical nitrogen fixation by molybdenum and tungsten complexes. Coord Chem Rev 185–186:99–108. doi: 10.1016/s0010-8545(98)00250-1 CrossRefGoogle Scholar
  13. 13.
    Sellmann D (1974) Dinitrogen-transition metal complexes: synthesis, properties, and significance. Angew Chem Int Ed Engl 13:639–649. doi: 10.1002/anie.197406391 CrossRefGoogle Scholar
  14. 14.
    Bazhenova TA, Shilov AE (1995) Nitrogen fixation in solution. Coord Chem Rev 144:69–145. doi: 10.1016/0010-8545(95)01139-g CrossRefGoogle Scholar
  15. 15.
    Jia HP, Quadrelli EA (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43:547–564. doi: 10.1039/c3cs60206k CrossRefGoogle Scholar
  16. 16.
    Shilov AE (2003) Catalytic reduction of molecular nitrogen in solutions. Russ Chem Bull 52:2555–2562. doi: 10.1023/b:rucb.0000019873.81002.60 CrossRefGoogle Scholar
  17. 17.
    Fryzuk MD, Johnson SA (2000) The continuing story of dinitrogen activation. Coord Chem Rev 200–202:379–409. doi: 10.1016/s0010-8545(00)00264-2 CrossRefGoogle Scholar
  18. 18.
    MacKay BA, Fryzuk MD (2004) Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem Rev 104:385–401. doi: 10.1021/cr020610c CrossRefGoogle Scholar
  19. 19.
    Badger RM (1934) A relation between internuclear distances and bond force constants. J Chem Phys 2:128–131. doi: 10.1063/1.1749433 CrossRefGoogle Scholar
  20. 20.
    Evans WJ, Fang M, Zucchi GL, Furche F, Ziller JW, Hoekstra RM, Zink JI (2009) Isolation of dysprosium and yttrium complexes of a three-electron reduction product in the activation of dinitrogen, the (N2)3– radical. J Am Chem Soc 131:11195–11202. doi: 10.1021/ja9036753 CrossRefGoogle Scholar
  21. 21.
    Gelerinter E, Silsbee RH (1966) Electron spin resonance identification of an N2 defect in X-irradiated sodium azide. J Chem Phys 45:1703–1709. doi: 10.1063/1.1727818 CrossRefGoogle Scholar
  22. 22.
    Marinkas PL, Bartram RH (1968) ESR of N2 in UV-irradiated single crystals of anhydrous barium azide. J Chem Phys 48:927–930. doi: 10.1063/1.1668738 CrossRefGoogle Scholar
  23. 23.
    Brailsford JR, Morton JR, Vannotti LE (1969) Electron spin resonance spectrum of N2 trapped in KCl, KBr, and KI. J Chem Phys 50:1051–1055. doi: 10.1063/1.1671155 CrossRefGoogle Scholar
  24. 24.
    Chiesa M, Giamello E, Murphy DM, Pacchioni G, Paganini MC, Soave R, Sojka Z (2001) Reductive activation of the nitrogen molecule at the surface of “electron-rich” MgO and CaO. The N2 surface adsorbed radical ion. J Phys Chem B 105:497–505. doi: 10.1021/jp002794+ CrossRefGoogle Scholar
  25. 25.
    Bozkaya U, Turney JM, Yamaguchi Y, Schaefer III HF (2010) The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2. J Chem Phys 132:064308. doi: 10.1063/1.3310285 CrossRefGoogle Scholar
  26. 26.
    Stoicheff BP (1954) High resolution raman spectroscopy of gases: III. Raman spectrum of nitrogen. Can J Phys 32:630–634. doi: 10.1139/p54-066 CrossRefGoogle Scholar
  27. 27.
    Carlotti M, Johns JWC, Trombetti A (1974) The ν5 fundamental bands of N2H2 and N2D2. Can J Phys 52:340–344. doi: 10.1139/p74-048 Google Scholar
  28. 28.
    Craig NC, Levin IW (1979) Vibrational assignment and potential function for trans-diazene (diimide): predictions for cis-diazene. J Chem Phys 71:400. doi: 10.1063/1.438084 CrossRefGoogle Scholar
  29. 29.
    Goubeau J, Kull U (1962) Die Schwingungsspektren von Natrium- und Zinkhydrazid. Z Anorg Allg Chem 316:182–189. doi: 10.1002/zaac.19623160310 CrossRefGoogle Scholar
  30. 30.
    Shaver MP, Fryzuk MD (2003) Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes. Adv Synth Catal 345:1061–1076. doi: 10.1002/adsc.200303081 CrossRefGoogle Scholar
  31. 31.
    Studt F, Tuczek F (2006) Theoretical, spectroscopic, and mechanistic studies on transition-metal dinitrogen complexes: implications to reactivity and relevance to the nitrogenase problem. J Comput Chem 27:1278–1291. doi: 10.1002/jcc.20413 CrossRefGoogle Scholar
  32. 32.
    Treitel IM, Flood MT, Marsh RE, Gray HB (1969) Molecular and electronic structure of μ-nitrogen-decaamminediruthenium(II). J Am Chem Soc 91:6512–6513. doi: 10.1021/ja01051a070 CrossRefGoogle Scholar
  33. 33.
    Chatt J, Fay RC, Richards RL (1971) Preparation and characterisation of the dinuclear dinitrogen complex, trichloro-μ-dinitrogen-bis(tetrahydrofuran){chlorotetrakis[dimethyl-(phenyl)phosphine]rhenium(I)}chromium(III) [(PMe2Ph)4CIReN2CrCl3-(thf)2]. J Chem Soc A 702–704. doi:  10.1039/J19710000702
  34. 34.
    Powell CB, Hall MB (1984) Molecular orbital calculations on dinitrogen-bridged transition-metal dimers. Inorg Chem 23:4619–4627. doi: 10.1021/ic00194a042 CrossRefGoogle Scholar
  35. 35.
    Mercer M, Crabtree RH, Richards RL (1973) A μ-dinitrogen complex with a long N–N bond. X-ray crystal structure of [(PMe2Ph)4CIReN2MoCl4(OMe)]. J Chem Soc Chem Commun 808–809. doi:  10.1039/C39730000808
  36. 36.
    Laplaza CE, Johnson MJA, Peters JC, Odom AL, Kim E, Cummins CC, George GN, Pickering IJ (1996) Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: mechanistic and structural data. J Am Chem Soc 118:8623–8638. doi: 10.1021/ja960574x CrossRefGoogle Scholar
  37. 37.
    Curley JJ, Cook TR, Reece SY, Müller P, Cummins CC (2008) Shining light on dinitrogen cleavage: structural features, redox chemistry, and photochemistry of the key intermediate bridging dinitrogen complex. J Am Chem Soc 130:9394–9405. doi: 10.1021/ja8002638 CrossRefGoogle Scholar
  38. 38.
    Laplaza CE, Cummins CC (1995) Dinitrogen cleavage by a three-coordinate molybdenum(III) complex. Science 268:861–863. doi: 10.1126/science.268.5212.861 CrossRefGoogle Scholar
  39. 39.
    Hirotsu M, Fontaine PP, Epshteyn A, Zavalij PY, Sita LR (2007) Dinitrogen activation at ambient temperatures: new modes of H2 and PhSiH3 additions for an “end-on-bridged” [Ta(IV)]2(μ-η11-N2) complex and for the bis(μ-nitrido) [Ta(V)(μ-N)]2 product derived from facile N≡N bond cleavage. J Am Chem Soc 129:9284–9285. doi: 10.1021/ja072248v CrossRefGoogle Scholar
  40. 40.
    Fontaine PP, Yonke BL, Zavalij PY, Sita LR (2010) Dinitrogen complexation and extent of N≡N activation within the group 6 “end-on-bridged” dinuclear complexes, {(η5-C5Me5)M[N(i-Pr)C(Me)N(i-Pr)]}2(μ-η11-N2) (M=Mo and W). J Am Chem Soc 132:12273–12285. doi: 10.1021/ja100469f CrossRefGoogle Scholar
  41. 41.
    Keane AJ, Yonke BL, Hirotsu M, Zavalij PY, Sita LR (2014) Fine-tuning the energy barrier for metal-mediated dinitrogen N≡N bond cleavage. J Am Chem Soc 136:9906–9909. doi: 10.1021/ja505309j CrossRefGoogle Scholar
  42. 42.
    Peigné B, Cano J, Aullón G (2012) On the coordination of dinitrogen to group 4 metallocenes. Eur J Inorg Chem 797–806. doi:  10.1002/ejic.201100788
  43. 43.
    Hirotsu M, Fontaine PP, Zavalij PY, Sita LR (2007) Extreme N≡N bond elongation and facile N-atom functionalization reactions within two structurally versatile new families of group 4 bimetallic “side-on-bridged” dinitrogen complexes for zirconium and hafnium. J Am Chem Soc 129:12690–12692. doi: 10.1021/ja0752989 CrossRefGoogle Scholar
  44. 44.
    Bezdek MJ, Guo S, Chirik PJ (2016) Terpyridine molybdenum dinitrogen chemistry: synthesis of dinitrogen complexes that vary by five oxidation states. Inorg Chem 55:3117–3127. doi: 10.1021/acs.inorgchem.6b00053 CrossRefGoogle Scholar
  45. 45.
    MacLachlan EA, Fryzuk MD (2006) Synthesis and reactivity of side-on-bound dinitrogen metal complexes. Organometallics 25:1530–1543. doi: 10.1021/om051055i CrossRefGoogle Scholar
  46. 46.
    Fryzuk MD, Haddad TS, Mylvaganam M, McConville DH, Rettig SJ (1993) End-on versus side-on bonding of dinitrogen to dinuclear early transition-metal complexes. J Am Chem Soc 115:2782–2792. doi: 10.1021/ja00060a028 CrossRefGoogle Scholar
  47. 47.
    Armor JN, Taube H (1970) Linkage isomerization in nitrogen-labeled [Ru(NH3)5N2]Br2. J Am Chem Soc 92:2560–2562. doi: 10.1021/ja00711a066 CrossRefGoogle Scholar
  48. 48.
    Jonas K (1973) π-Bonded nitrogen in a crystalline nickel-lithium complex. Angew Chem Int Ed Engl 12:997–998. doi: 10.1002/anie.197309971 CrossRefGoogle Scholar
  49. 49.
    Krüger C, Tsay YH (1973) Molecular structure of a π-dinitrogen-nickel-lithium complex. Angew Chem Int Ed Engl 12:998–999. doi: 10.1002/anie.197309981 CrossRefGoogle Scholar
  50. 50.
    Evans WJ, Ulibarri TA, Ziller JW (1988) Isolation and X-ray crystal structure of the first dinitrogen complex of an f-element metal, [(C5Me5)2Sm]2N2. J Am Chem Soc 110:6877–6879. doi: 10.1021/ja00228a043 CrossRefGoogle Scholar
  51. 51.
    Fryzuk MD, Haddad TS, Rettig SJ (1990) Reduction of dinitrogen by a zirconium phosphine complex to form a side-on-bridging N2 ligand. Crystal structure of {[Pri 2PCH2SiMe2)2N]ZrCl}2(μ-η22-N2). J Am Chem Soc 112:8185–8186. doi:  10.1021/ja00178a063
  52. 52.
    Thorn DL, Tulip TH, Ibers JA (1979) The structure of trans-chloro(dinitrogen)bis(tri-isopropylphosphine)-rhodium(I): an X-ray study of the structure in the solid state and a nuclear magnetic resonance study of the structure in solution. J Chem Soc Dalton Trans 2022–2025. doi:  10.1039/dt9790002022
  53. 53.
    Peterson EJ, Von Dreele RB, Brown TM (1976) Crystal and molecular structure of tetraisothiocyanatobis(2,2′-bipyridine)niobium(IV) and -zirconium(IV). Inorg Chem 15:309–315. doi: 10.1021/ic50156a014 CrossRefGoogle Scholar
  54. 54.
    Archer RD, Day RO, Illingsworth ML (1979) Transition-metal eight-coordination. 13. Synthesis, characterization, and crystal and molecular structure of the Schiff-base chelate bis(N,N′-disalicylidene-1,2-phenylenediamino)zirconium(IV) benzene solvate. Inorg Chem 18:2908–2916. doi: 10.1021/ic50200a056 CrossRefGoogle Scholar
  55. 55.
    Studt F, Morello L, Lehnert N, Fryzuk MD, Tuczek F (2003) Side-on bridging coordination of N2: spectroscopic characterization of the planar Zr2N2 core and theoretical investigation of its butterfly distortion. Chem A Eur J 9:520–530. doi: 10.1002/chem.200390055 CrossRefGoogle Scholar
  56. 56.
    Clentsmith GKB, Bates VME, Hitchcock PB, Cloke FGN (1999) Reductive cleavage of dinitrogen by a vanadium diamidoamine complex: the molecular structures of [V(Me3SiN{CH2CH2NSiMe3}2)(μ-N)]2 and K[V(Me3SiN{CH2CH2NSiMe3}2)(μ-N)]2. J Am Chem Soc 121:10444–10445. doi: 10.1021/ja9921219 CrossRefGoogle Scholar
  57. 57.
    Bates VME, Clentsmith GKB, Cloke GN, Green JC, Jenkin HDL (2000) Theoretical investigation of the pathway for reductive cleavage of dinitrogen by a vanadium diamidoamine complex. Chem Commun 927–928. doi:  10.1039/b002534h
  58. 58.
    Studt F, Lamarche VME, Clentsmith GKB, Cloke FGN, Tuczek F (2005) Vibrational and electronic structure of the dinuclear bis(μ-nitrido) vanadium(V) complex [V(N{N´´}2)(μ-N)]2: spectroscopic properties of the M2(μ-N)2 diamond core. Dalton Trans 1052–1057. doi:  10.1039/b418856j
  59. 59.
    Zhang W, Tang Y, Lei M, Morokuma K, Musaev DG (2011) Ditantalum dinitrogen complex: reaction of H2 molecule with “end-on-bridged” [TaIV]2(μ-η11-N2) and bis(μ-nitrido) [TaV]2(μ-N)2 complexes. Inorg Chem 50:9481–9490. doi: 10.1021/ic201159z CrossRefGoogle Scholar
  60. 60.
    Cavigliasso G, Wilson L, McAlpine S, Attar M, Stranger R, Yates BF (2010) Activation and cleavage of the N–N bond in side-on bound [L2M-NN-ML2] (L=NH2, NMe2, NiPr2, C5H5, C5Me4H) dinitrogen complexes of transition metals from groups 4 through 9. Dalton Trans 39:4529–4540. doi: 10.1039/b924999k CrossRefGoogle Scholar
  61. 61.
    Bobadova-Parvanova P, Wang Q, Morokuma K, Musaev DG (2005) How many methyl groups in [{(η5-C5MenH5–n)2Zr}2222-N2)] are needed for dinitrogen hydrogenation? A theoretical study. Angew Chem Int Ed 44:7101–7103. doi: 10.1002/anie.200501371 CrossRefGoogle Scholar
  62. 62.
    Chirik PJ (2010) Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29:1500–1517. doi: 10.1021/om100016p CrossRefGoogle Scholar
  63. 63.
    Pool JA, Lobkovsky E, Chirik PJ (2004) Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427:527–530. doi: 10.1038/nature02274 CrossRefGoogle Scholar
  64. 64.
    Manriquez JM, Bercaw JE (1974) Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to stoichiometric reduction of dinitrogen to hydrazine. J Am Chem Soc 96:6229–6230. doi: 10.1021/ja00826a071 CrossRefGoogle Scholar
  65. 65.
    Pool JA, Bernskoetter WH, Chirik PJ (2004) On the origin of dinitrogen hydrogenation promoted by [(η5-C5Me4H)2Zr]2222-N2). J Am Chem Soc 126:14326–14327. doi: 10.1021/ja045566s CrossRefGoogle Scholar
  66. 66.
    Knobloch DJ, Lobkovsky E, Chirik PJ (2010) Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nat Chem 2:30–35. doi: 10.1038/nchem.477 CrossRefGoogle Scholar
  67. 67.
    Bobadova-Parvanova P, Wang Q, Quinonero-Santiago D, Morokuma K, Musaev DG (2006) Does dinitrogen hydrogenation follow different mechanisms for [(η 5-C5Me4H)2Zr]2(μ 2,η 2,η 2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(μ 2,η 2,η 2-N2) complexes? A computational study. J Am Chem Soc 128:11391–11403. doi: 10.1021/ja057937q CrossRefGoogle Scholar
  68. 68.
    Fryzuk MD, Johnson SA, Rettig SJ (1998) New mode of coordination for the dinitrogen ligand: a dinuclear tantalum complex with a bridging N2 unit that is both side-on and end-on. J Am Chem Soc 120:11024–11025. doi: 10.1021/ja982377z CrossRefGoogle Scholar
  69. 69.
    Fryzuk MD, Johnson SA, Patrick BO, Albinati A, Mason SA, Koetzle TF (2001) New mode of coordination for the dinitrogen ligand: formation, bonding, and reactivity of a tantalum complex with a bridging N2 unit that is both side-on and end-on. J Am Chem Soc 123:3960–3973. doi: 10.1021/ja0041371 CrossRefGoogle Scholar
  70. 70.
    Fryzuk MD, MacKay BA, Johnson SA, Patrick BO (2002) Hydroboration of coordinated dinitrogen: a new reaction for the N2 ligand that results in its functionalization and cleavage. Angew Chem Int Ed 41:3709–3712. doi: 10.1002/1521-3773(20021004)41:19<3709::aid-anie3709>;2-u CrossRefGoogle Scholar
  71. 71.
    Fryzuk MD, MacKay BA, Patrick BO (2003) Hydrosilylation of a dinuclear tantalum dinitrogen complex: cleavage of N2 and functionalization of both nitrogen atoms. J Am Chem Soc 125:3234–3235. doi: 10.1021/ja034303f CrossRefGoogle Scholar
  72. 72.
    MacKay BA, Munha RF, Fryzuk MD (2006) Substituent effects in the hydrosilylation of coordinated dinitrogen in a ditantalum complex: cleavage and functionalization of N2. J Am Chem Soc 128:9472–9483. doi: 10.1021/ja061508q CrossRefGoogle Scholar
  73. 73.
    Yeo A, Shaver MP, Fryzuk MD (2015) A new side-on end-on ditantalum dinitrogen complex and its reaction with BuSiH3. Z Anorg Allg Chem 641:123–127. doi: 10.1002/zaac.201400167 CrossRefGoogle Scholar
  74. 74.
    MacKay BA, Patrick BO, Fryzuk MD (2005) Hydroalumination of a dinuclear tantalum dinitrogen complex: N–N bond cleavage and ancillary ligand rearrangement. Organometallics 24:3836–3841. doi: 10.1021/om050208z CrossRefGoogle Scholar
  75. 75.
    Spencer LP, MacKay BA, Patrick BO, Fryzuk MD (2006) Inner-sphere two-electron reduction leads to cleavage and functionalization of coordinated dinitrogen. Proc Natl Acad Sci U S A 103:17094–17098. doi: 10.1073/pnas.0602132103 CrossRefGoogle Scholar
  76. 76.
    Ballmann J, Yeo A, Patrick BO, Fryzuk MD (2011) Carbon-nitrogen bond formation by the reaction of 1,2-cumulenes with a ditantalum complex containing side-on- and end-on-bound dinitrogen. Angew Chem Int Ed 50:507–510. doi: 10.1002/anie.201005704 CrossRefGoogle Scholar
  77. 77.
    Cui Q, Musaev DG, Svensson M, Sieber S, Morokuma K (1995) N2 cleavage by three-coordinate group 6 complexes. W(III) Complexes would be better than Mo(III) complexes. J Am Chem Soc 117:12366–12367. doi: 10.1021/ja00154a052 CrossRefGoogle Scholar
  78. 78.
    Peters JC, Cherry JPF, Thomas JC, Baraldo L, Mindiola DJ, Davis WM, Cummins CC (1999) Redox-catalyzed binding of dinitrogen by molybdenum N-tert-hydrocarbylanilide complexes: implications for dinitrogen functionalization and reductive cleavage. J Am Chem Soc 121:10053–10067. doi: 10.1021/ja991435t CrossRefGoogle Scholar
  79. 79.
    Kol M, Schrock RR, Kempe R, Davis WM (1994) Synthesis of molybdenum and tungsten complexes that contain triamidoamine ligands of the type (C6F5NCH2CH2)3N and activation of dinitrogen by molybdenum. J Am Chem Soc 116:4382–4390. doi: 10.1021/ja00089a028 CrossRefGoogle Scholar
  80. 80.
    Shih KY, Schrock RR, Kempe R (1994) Synthesis of molybdenum complexes that contain silylated triamidoamine ligands. A μ-dinitrogen complex, methyl and acetylide complexes, and coupling of acetylides. J Am Chem Soc 116:8804–8805. doi: 10.1021/ja00098a048 CrossRefGoogle Scholar
  81. 81.
    Christian G, Driver J, Stranger R (2003) Dinitrogen activation in sterically-hindered three-coordinate transition metal complexes. Faraday Discuss 124:331–341. doi: 10.1039/b211335j CrossRefGoogle Scholar
  82. 82.
    Christian G, Stranger R, Yates BF, Graham DC (2005) Ligand rotation in [Ar(R)N]3M-N2-M´[N(R)Ar]3 (M,M´=MoIII, NbIII; R=iPr and tBu) dimers. Dalton Trans 962–968. doi:  10.1039/b413766c
  83. 83.
    Brookes NJ, Graham DC, Christian G, Stranger R, Yates BF (2009) The influence of peripheral ligand bulk on nitrogen activation by three-coordinate molybdenum complexes – a theoretical study using the ONIOM method. J Comput Chem 30:2146–2156. doi: 10.1002/jcc.21199 CrossRefGoogle Scholar
  84. 84.
    Solari E, Da Silva C, Iacono B, Hesschenbrouck J, Rizzoli C, Scopelliti R, Floriani C (2001) Photochemical activation of the N≡N bond in a dimolybdenum–dinitrogen complex: formation of a molybdenum nitride. Angew Chem Int Ed 40:3907–3909. doi: 10.1002/1521-3773(20011015)40:20<3907::aid-anie3907>;2-# CrossRefGoogle Scholar
  85. 85.
    Huss AS, Curley JJ, Cummins CC, Blank DA (2013) Relaxation and dissociation following photoexcitation of the (μ-N2)[Mo(N[t-Bu]Ar)3]2 dinitrogen cleavage intermediate. J Phys Chem B 117:1429–1436. doi: 10.1021/jp310122x CrossRefGoogle Scholar
  86. 86.
    Reiher M, Kirchner B, Hutter J, Sellmann D, Hess BA (2004) A photochemical activation scheme of inert dinitrogen by dinuclear RuII and FeII complexes. Chem A Eur J 10:4443–4453. doi: 10.1002/chem.200400081 CrossRefGoogle Scholar
  87. 87.
    Chisholm MH, Cotton FA, Frenz BA, Reichert WW, Shive LW, Stults BR (1976) The molybdenum–molybdenum triple bond. 1. Hexakis(dimethy1amido)dimolybdenum and some homologues: preparation, structure, and properties. J Am Chem Soc 98:4469–4476. doi: 10.1021/ja00431a024 CrossRefGoogle Scholar
  88. 88.
    Hahn J, Landis CR, Nasluzov VA, Neyman KM, Rösch N (1997) Steric effects on dinitrogen cleavage by three-coordinate molybdenum(III) complexes: a molecular mechanics study. Inorg Chem 36:3947–3951. doi: 10.1021/ic961466e CrossRefGoogle Scholar
  89. 89.
    Johnson MJA, Lee PM, Odom AL, Davis WM, Cummins CC (1997) Atom-bridged intermediates in N- and P-atom transfer reactions. Angew Chem Int Ed Engl 36:87–91. doi: 10.1002/anie.199700871 CrossRefGoogle Scholar
  90. 90.
    Cummins CC (1998) Reductive cleavage and related reactions leading to molybdenum–element multiple bonds: new pathways offered by three-coordinate molybdenum(III). Chem Commun 1777–1786. doi:  10.1039/a802402b
  91. 91.
    Laplaza CE, Johnson AR, Cummins CC, October RV (1996) Nitrogen atom transfer coupled with dinitrogen cleavage and Mo–Mo triple bond formation. J Am Chem Soc 118:709–710. doi: 10.1021/ja953573y CrossRefGoogle Scholar
  92. 92.
    Tsai YC, Johnson MJA, Mindiola DJ, Cummins CC, Klooster WT, Koetzle TF (1999) A cyclometalated resting state for a reactive molybdenum amide: favorable consequences of β-hydrogen elimination including reductive cleavage, coupling, and complexation. J Am Chem Soc 121:10426–10427. doi: 10.1021/ja9917464 CrossRefGoogle Scholar
  93. 93.
    van Koten G, Milstein D (eds) (2013) Organometallic pincer chemistry. Topics in organometallic chemistry, vol 40. Springer, HeidelbergGoogle Scholar
  94. 94.
    Szabo KJ, Wendt OF (eds) (2014) Pincer and pincer-type complexes: applications in organic synthesis and catalysis. Wiley-VCH, WeinheimGoogle Scholar
  95. 95.
    Smythe NC, Schrock RR, Müller P, Weare WW (2006) Synthesis of [(HIPTNCH2CH2)3N]Cr compounds (HIPT=3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of chromium for the reduction of dinitrogen to ammonia. Inorg Chem 45:7111–7118. doi: 10.1021/ic060549k CrossRefGoogle Scholar
  96. 96.
    Vidyaratne I, Scott J, Gambarotta S, Budzelaar PHM (2007) Dinitrogen activation, partial reduction, and formation of coordinated imide promoted by a chromium diiminepyridine complex. Inorg Chem 46:7040–7049. doi: 10.1021/ic700810f CrossRefGoogle Scholar
  97. 97.
    Hebden TJ, Schrock RR, Takase MK, Müller P (2012) Cleavage of dinitrogen to yield a (t-BuPOCOP)molybdenum(IV) nitride. Chem Commun 48:1851–1853. doi: 10.1039/c2cc17634c CrossRefGoogle Scholar
  98. 98.
    Liao Q, Cavaillé A, Saffon-Merceron N, Mézailles N (2016) Direct synthesis of silylamine from N2 and a silane: mediated by a tridentate phosphine molybdenum fragment. Angew Chem Int Ed 55:11212–11216. doi: 10.1002/anie.201604812 CrossRefGoogle Scholar
  99. 99.
    Liao Q, Saffon-Merceron N, Mézailles N (2015) N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal 5:6902–6906. doi: 10.1021/acscatal.5b01626 CrossRefGoogle Scholar
  100. 100.
    Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J Am Chem Soc 137:5666–5669. doi: 10.1021/jacs.5b02579 CrossRefGoogle Scholar
  101. 101.
    Klopsch I, Finger M, Würtele C, Milde B, Werz DB, Schneider S (2014) Dinitrogen splitting and functionalization in the coordination sphere of rhenium. J Am Chem Soc 136:6881–6883. doi: 10.1021/ja502759d CrossRefGoogle Scholar
  102. 102.
    Klopsch I, Kinauer M, Finger M, Würtele C, Schneider S (2016) Conversion of dinitrogen into acetonitrile under ambient conditions. Angew Chem Int Ed 55:4786–4789. doi: 10.1002/anie.201600790 CrossRefGoogle Scholar
  103. 103.
    Scheibel MG, Askevold B, Heinemann FW, Reijerse EJ, de Bruin B, Schneider S (2012) Closed-shell and open-shell square-planar iridium nitrido complexes. Nat Chem 4:552–558. doi: 10.1038/nchem.1368 CrossRefGoogle Scholar
  104. 104.
    Scheibel MG, Wu Y, Stückl AC, Krause L, Carl E, Stalke D, de Bruin B, Schneider S (2013) Synthesis and reactivity of a transient, terminal nitrido complex of rhodium. J Am Chem Soc 135:17719–17722. doi: 10.1021/ja409764j CrossRefGoogle Scholar
  105. 105.
    Abbenseth J, Finger M, Würtele C, Kasanmascheff M, Schneider S (2016) Coupling of terminal iridium nitrido complexes. Inorg Chem Front 3:469–477. doi: 10.1039/c5qi00267b CrossRefGoogle Scholar
  106. 106.
    Keane AJ, Farrell WS, Yonke BL, Zavalij PY, Sita LR (2015) Metal-mediated production of isocyanates, R3EN=C=O from dinitrogen, carbon dioxide, and R3ECl. Angew Chem Int Ed 54:10220–10224. doi: 10.1002/anie.201502293 CrossRefGoogle Scholar
  107. 107.
    Miyazaki T, Tanaka H, Tanabe Y, Yuki M, Nakajima K, Yoshizawa K, Nishibayashi Y (2014) Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine. Angew Chem Int Ed 53:11488–11492. doi: 10.1002/anie.201405673 CrossRefGoogle Scholar
  108. 108.
    Rebreyend C, de Bruin B (2015) Photolytic N2 splitting: a road to sustainable NH3 production? Angew Chem Int Ed 54:42–44. doi: 10.1002/anie.201409727 CrossRefGoogle Scholar
  109. 109.
    Crossland JL, Tyler DR (2010) Iron–dinitrogen coordination chemistry: dinitrogen activation and reactivity. Coord Chem Rev 254:1883–1894. doi: 10.1016/j.ccr.2010.01.005 CrossRefGoogle Scholar
  110. 110.
    Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Reactivity of dinitrogen bound to mid- and late-transition-metal centers. Eur J Inorg Chem 567–598. doi:  10.1002/ejic.201403041
  111. 111.
    McWilliams SF, Holland PL (2015) Dinitrogen binding and cleavage by multinuclear iron complexes. Acc Chem Res 48:2059–2065. doi: 10.1021/acs.accounts.5b00213 CrossRefGoogle Scholar
  112. 112.
    Hazari N (2010) Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem Soc Rev 39:4044–4056. doi: 10.1039/b919680n CrossRefGoogle Scholar
  113. 113.
    MacLeod KC, Holland PL (2013) Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat Chem 5:559–565. doi: 10.1038/nchem.1620 CrossRefGoogle Scholar
  114. 114.
    Betley TA, Peters JC (2004) A tetrahedrally coordinated L3Fe–Nx platform that accommodates terminal nitride (FeIV≡N) and dinitrogen (FeI–N2–FeI) ligands. J Am Chem Soc 126:6252–6254. doi: 10.1021/ja048713v CrossRefGoogle Scholar
  115. 115.
    Hendrich MP, Gunderson W, Behan RK, Green MT, Mehn MP, Betley TA, Lu CC, Peters JC (2006) On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: spectroscopic studies of FeI(N2)FeI, FeIV≡N, and related spiecies. Proc Natl Acad Sci U S A 103:17107–17112. doi: 10.1073/pnas.0604402103 CrossRefGoogle Scholar
  116. 116.
    Krahe O, Bill E, Neese F (2014) Decay of iron(V) nitride complexes by a N–N bond-coupling reaction in solution: a combined spectroscopic and theoretical analysis. Angew Chem Int Ed 53:8727–8731. doi: 10.1002/anie.201403402 CrossRefGoogle Scholar
  117. 117.
    Kane-Maguire LAP, Sheridan PS, Basolo F, Pearson RG (1970) Azidoruthenium(III) complexes as precursors for molecular nitrogen and nitrene complexes. J Am Chem Soc 92:5865–5872. doi: 10.1021/ja00723a009 CrossRefGoogle Scholar
  118. 118.
    Buhr JD, Taube H (1979) Oxidation of [Os(NH3)5CO]2+ to [(Os(NH3)4CO)2N2]4+. Inorg Chem 18:2208–2212. doi: 10.1021/ic50198a032 CrossRefGoogle Scholar
  119. 119.
    Che CM, Lam HW, Tong WF, Lai TF, Lau TC (1989) Model reactions for nitrogen fixation. Photo-induced formation and X-ray crystal structure of [Os2(NH3)8(MeCN)2(N2)]5+ from [OsVI(NH3)4N]3+. J Chem Soc Chem Commun 1883–1884. doi:  10.1039/c39890001883
  120. 120.
    Ware DC, Taube H (1991) Substitution-induced N–N coupling for nitride coordinated to osmium(VI). Inorg Chem 30:4605–4610. doi: 10.1021/ic00024a029 CrossRefGoogle Scholar
  121. 121.
    Demadis KD, Meyer TJ, White PS (1997) Localization in trans,trans-[(tpy)(Cl)2OsIII(N2)OsII(Cl)2(tpy)]+ (tpy=2,2′:6′,2′′-Terpyridine). Inorg Chem 36:5678–5679. doi: 10.1021/ic970885o CrossRefGoogle Scholar
  122. 122.
    Seymore SB, Brown SN (2002) Polar effects in nitride coupling reactions. Inorg Chem 41:462–469. doi: 10.1021/ic010844z CrossRefGoogle Scholar
  123. 123.
    Kunkely H, Vogler A (2010) Photolysis of aqueous [(NH3)5Os(μ-N2)Os(NH3)5]5+: cleavage of dinitrogen by an intramolecular photoredox reaction. Angew Chem Int Ed 49:1591–1593. doi: 10.1002/anie.200905026 CrossRefGoogle Scholar
  124. 124.
    Rodriguez MM, Bill E, Brennessel WW, Holland PL (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783. doi: 10.1126/science.1211906 CrossRefGoogle Scholar
  125. 125.
    Smith JM, Lachicotte RJ, Pittard KA, Cundari TR, Lukat-Rodgers G, Rodgers KR, Holland PL (2001) Stepwise reduction of dinitrogen bond order by a low-coordinate iron complex. J Am Chem Soc 123:9222–9223. doi: 10.1021/ja016094+ CrossRefGoogle Scholar
  126. 126.
    Figg TM, Holland PL, Cundari TR (2012) Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorg Chem 51:7546–7550. doi: 10.1021/ic300150u CrossRefGoogle Scholar
  127. 127.
    Grubel K, Brennessel WW, Mercado BQ, Holland PL (2014) Alkali metal control over N−N cleavage in iron complexes. J Am Chem Soc 136:16807–16816. doi: 10.1021/ja507442b CrossRefGoogle Scholar
  128. 128.
    McWilliams SF, Rodgers KR, Lukat-Rodgers G, Mercado BQ, Grubel K, Holland PL (2016) Alkali metal variation and twisting of the FeNNFe core in bridging diiron dinitrogen complexes. Inorg Chem 55:2960–2968. doi: 10.1021/acs.inorgchem.5b02841 CrossRefGoogle Scholar
  129. 129.
    MacLeod KC, Vinyard DJ, Holland PL (2014) A multi-iron system capable of rapid N2 formation and N2 cleavage. J Am Chem Soc 136:10226–10229. doi: 10.1021/ja505193z CrossRefGoogle Scholar
  130. 130.
    MacLeod KC, McWilliams SF, Mercado BQ, Holland PL (2016) Stepwise N–H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chem Sci 7:5736–5746. doi: 10.1039/c6sc00423g CrossRefGoogle Scholar
  131. 131.
    MacLeod KC, Menges FS, McWilliams SF, Craig SM, Mercado BQ, Johnson MA, Holland PL (2016) Alkali-controlled C–H cleavage or N–C bond formation by N2-derived iron nitrides and imides. J Am Chem Soc 138:11185–11191. doi: 10.1021/jacs.6b04984 CrossRefGoogle Scholar
  132. 132.
    Lee Y, Sloane FT, Blondin G, Abboud KA, García-Serres R, Murray LJ (2015) Dinitrogen activation upon reduction of a triiron(II) complex. Angew Chem Int Ed 54:1499–1503. doi: 10.1002/anie.201409676 CrossRefGoogle Scholar
  133. 133.
    Eikey RA, Abu-Omar MM (2003) Nitrido and imido transition metal complexes of groups 6–8. Coord Chem Rev 243:83–124. doi: 10.1016/S0010-8545(03)00048-1 CrossRefGoogle Scholar
  134. 134.
    Berry JF (2009) Terminal nitrido and imido complexes of the late transition metals. Comm Inorg Chem 30:28–66. doi: 10.1080/02603590902768875 CrossRefGoogle Scholar
  135. 135.
    Shima T, Hu S, Luo G, Kang X, Luo Y, Hou Z (2013) Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340:1549–1552. doi: 10.1126/science.1238663 CrossRefGoogle Scholar
  136. 136.
    Nikiforov GB, Vidyaratne I, Gambarotta S, Korobkov I (2009) Titanium-promoted dinitrogen cleavage, partial hydrogenation, and silylation. Angew Chem Int Ed 48:7415–7419. doi: 10.1002/anie.200903648 CrossRefGoogle Scholar
  137. 137.
    Vidyaratne I, Crewdson P, Lefebvre E, Gambarotta S (2007) Dinitrogen coordination and cleavage promoted by a vanadium complex of a σ,π,σ-donor ligand. Inorg Chem 46:8836–8842CrossRefGoogle Scholar
  138. 138.
    Akagi F, Matsuo T, Kawaguchi H (2007) Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew Chem Int Ed 46:8778–8781. doi: 10.1002/anie.200703336 CrossRefGoogle Scholar
  139. 139.
    Searles K, Carroll PJ, Chen CH, Pink M, Mindiola DJ (2015) Niobium-nitrides derived from nitrogen splitting. Chem Commun 51:3526–3528. doi: 10.1039/c4cc09563d CrossRefGoogle Scholar
  140. 140.
    Andino JG, Mazumder S, Pal K, Caulton KG (2013) New approaches to functionalizing metal-coordinated N2. Angew Chem Int Ed 52:4726–4732. doi: 10.1002/anie.201209168 CrossRefGoogle Scholar
  141. 141.
    Benson SW (1965) Bond energies. J Chem Educ 42:502–518. doi: 10.1021/ed042p502 CrossRefGoogle Scholar
  142. 142.
    Burgess DR. Thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD.
  143. 143.
    Kawaguchi H, Matsuo T (2002) Dinitrogen-bond cleavage in a niobium complex supported by a tridentate aryloxide ligand. Angew Chem Int Ed 41:2792–2794. doi: 10.1002/1521-3773(20020802)41:15<2792::aid-anie2792>;2-k CrossRefGoogle Scholar
  144. 144.
    Akagi F, Suzuki S, Ishida Y, Hatanaka T, Matsuo T, Kawaguchi H (2013) Reactions of a niobium nitride complex prepared from dinitrogen: synthesis of imide and ureate complexes and ammonia formation. Eur J Inorg Chem 3930–3936. doi:  10.1002/ejic.201300172
  145. 145.
    Ishida Y, Kawaguchi H (2014) Nitrogen atom transfer from a dinitrogen-derived vanadium nitride complex to carbon monoxide and isocyanide. J Am Chem Soc 136:16990–16993. doi: 10.1021/ja510317h CrossRefGoogle Scholar
  146. 146.
    Yonke BL, Reeds JP, Fontaine PP, Zavalij PY, Sita LR (2014) Catalytic production of isocyanates via orthogonal atom and group transfers employing a shared formal group 6 M(II)/M(IV) redox cycle. Organometallics 33:3239–3242. doi: 10.1021/om500532s CrossRefGoogle Scholar
  147. 147.
    Cozzolino AF, Silvia JS, Lopez N, Cummins CC (2014) Experimental and computational studies on the formation of cyanate from early metal terminal nitrido ligands and carbon monoxide. Dalton Trans 43:4639–4652. doi: 10.1039/c3dt52738g CrossRefGoogle Scholar
  148. 148.
    Silvia JS, Cummins CC (2009) Two-electron reduction of a vanadium(V) nitride by CO to release cyanate and open a coordination site. J Am Chem Soc 131:446–447. doi: 10.1021/ja807767w CrossRefGoogle Scholar
  149. 149.
    Tran BL, Pink M, Gao X, Park H, Mindiola DJ (2010) Low-coordinate and neutral nitrido complexes of vanadium. J Am Chem Soc 132:1458–1459. doi: 10.1021/ja908303k CrossRefGoogle Scholar
  150. 150.
    Sceats EL, Figueroa JS, Cummins CC, Loening NM, Van der Wel P, Griffin RG (2004) Complexes obtained by electrophilic attack on a dinitrogen-derived terminal molybdenum nitride: electronic structure analysis by solid state CP/MAS 15N NMR in combination with DFT calculations. Polyhedron 23:2751–2768. doi: 10.1016/j.poly.2004.08.010 CrossRefGoogle Scholar
  151. 151.
    Curley JJ, Cozzolino AF, Cummins CC (2011) Nitrogen fixation to cyanide at a molybdenum center. Dalton Trans 40:2429–2432. doi: 10.1039/c0dt01326a CrossRefGoogle Scholar
  152. 152.
    Sivasankar C, Tuczek F (2006) Double deprotonation of coordinated ethylimide to CH3CN: molecular mechanism and relevance to the chemistry of Mo and W organoimides. Dalton Trans 3396–3398. doi:  10.1039/b602038k
  153. 153.
    Kukushkin VY, Pombeiro AJL (2002) Additions to metal-activated organonitriles. Chem Rev 102:1771–1802. doi: 10.1021/cr0103266 CrossRefGoogle Scholar
  154. 154.
    Henderickx H, Kwakkenbos G, Peters A, van der Spoel J, de Vries K (2003) Direct formation of an organonitrogen compound from a molybdenum nitrido species. Chem Commun 897:2050–2051. doi: 10.1039/b305774g CrossRefGoogle Scholar
  155. 155.
    Curley JJ, Sceats EL, Cummins CC (2006) A cycle for organic nitrile synthesis via dinitrogen cleavage. J Am Chem Soc 128:14036–14037. doi: 10.1021/ja066090a CrossRefGoogle Scholar
  156. 156.
    Mindiola DJ, Meyer K, Cherry JPF, Baker TA, Cummins CC (2000) Dinitrogen cleavage stemming from a heterodinuclear niobium/molybdenum N2 complex: new nitridoniobium systems including a niobazene cyclic trimer. Organometallics 19:1622–1624. doi: 10.1021/om000159k CrossRefGoogle Scholar
  157. 157.
    Figueroa JS, Piro NA, Clough CR, Cummins CC (2006) A nitridoniobium(V) reagent that effects acid chloride to organic nitrile conversion: synthesis via heterodinuclear (Nb/Mo) dinitrogen cleavage, mechanistic insights, and recycling. J Am Chem Soc 128:940–950. doi: 10.1021/ja056408j CrossRefGoogle Scholar
  158. 158.
    Hou Z, Shima T, Hu S, Endo Y (2014) Novel complex and use of same. WO Patent 2014080939 A1, US Patent 20150291635Google Scholar
  159. 159.
    Hu S, Shima T, Luo Y, Hou Z (2013) Tetranuclear zirconium and hafnium polyhydride complexes composed of the “CpMH2” units. Organometallics 32:2145–2151. doi: 10.1021/om400012a CrossRefGoogle Scholar
  160. 160.
    Guru MM, Shima T, Hou Z (2016) Conversion of dinitrogen to nitriles at a multinuclear titanium framework. Angew Chem Int Ed. doi:  10.1002/anie.201607426
  161. 161.
    Askevold B, Nieto JT, Tussupbayev S, Diefenbach M, Herdweck E, Holthausen MC, Schneider S (2011) Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand. Nat Chem 3:532–537. doi: 10.1038/nchem.1051 CrossRefGoogle Scholar
  162. 162.
    Schendzielorz FS, Finger M, Volkmann C, Würtele C, Schneider S (2016) A terminal osmium(IV) nitride: ammonia formation and ambiphilic reactivity. Angew Chem Int Ed 55:11417–11420. doi: 10.1002/anie.201604917 CrossRefGoogle Scholar
  163. 163.
    Walstrom A, Fan H, Pink M, Caulton KG (2010) Unexpected selectivity in electrophilic attack on (PNP)RuN. Inorg Chim Acta 363:633–636. doi: 10.1016/j.ica.2008.11.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isabel Klopsch
    • 1
  • Ekaterina Yu Yuzik-Klimova
    • 1
  • Sven Schneider
    • 1
    Email author
  1. 1.Institute for Inorganic ChemistryUniversity of GoettingenGoettingenGermany

Personalised recommendations