Synthetic Nitrogen Fixation with Mononuclear Molybdenum(0) Phosphine Complexes: Occupying the trans-Position of Coordinated N2

  • Nadja Stucke
  • Thomas Weyrich
  • Mareike Pfeil
  • Katharina Grund
  • Andrei Kindjajev
  • Felix TuczekEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)


Synthetic nitrogen fixation with molybdenum phosphine complexes has witnessed a renaissance recently due to the discovery that such systems are competent to catalytically convert N2 to ammonia. In the framework of this research area, we have prepared complexes of the type [Mo(N2)(PEP)(P2)] (E = N, P; P2 = dppm, dmpm) in which the linear PEP ligand coordinates in a facial geometry. Similar complexes have been prepared using mixed carbene–phosphine (PCP) ligands. Furthermore, molybdenum bis(dinitrogen) complexes have been synthesized which are facially coordinated by a tripod ligand and contain the bidentate coligands dppm and dmpm. Recently, both of these approaches have been united in the synthesis of a Mo(0)–N2 complex supported by a pentadentate tetrapodal (pentaPod) ligand. The structural, electronic, and vibrational properties of all of these dinitrogen complexes have been investigated by NMR, IR, and Raman spectroscopy, and their reactivities in a nitrogen fixing cycle have been evaluated. To this end, protonated derivatives have been investigated as well. On the basis of these results and DFT calculations, these systems are promising candidates for the catalytic conversion of N2 to ammonia.


Mixed phosphine/carbene ligands Molybdenum complexes Multidentate phosphine ligands Nitrogen fixation 


  1. 1.
    MacKay BA, Fryzuk MD (2004) Chem Rev 104:385–401CrossRefGoogle Scholar
  2. 2.
    Burgess BK, Lowe DJ (1996) Chem Rev 96:2983–3011CrossRefGoogle Scholar
  3. 3.
    Alberty RA, Goldberg RN (2004) Biochemistry 31:10610–10615CrossRefGoogle Scholar
  4. 4.
    Burgess BK (1990) Chem Rev 90:1377–1406CrossRefGoogle Scholar
  5. 5.
    Kim JS, Rees DC (1992) Nature 360:553–560CrossRefGoogle Scholar
  6. 6.
    Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974–977CrossRefGoogle Scholar
  7. 7.
    Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940–940CrossRefGoogle Scholar
  8. 8.
    Thorneley RNF, Lowe DJ (1985) In: Spiro TG (ed) Molybdenum enzymes. Wiley, New YorkGoogle Scholar
  9. 9.
    Hinrichsen S, Broda H, Gradert C, Söncksen L, Tuczek F (2012) Annu Rep Prog Chem Sect A Inorg Chem 108:17–47CrossRefGoogle Scholar
  10. 10.
    Henderson RA, Leigh GJ, Pickett CJ (1983) Adv Inorg Chem 27:197–292CrossRefGoogle Scholar
  11. 11.
    Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) J Am Chem Soc 137:5666–5669CrossRefGoogle Scholar
  12. 12.
    Del Castillo TJ, Thompson NB, Peters JC (2016) J Am Chem Soc 138:5341–5350CrossRefGoogle Scholar
  13. 13.
    Schrock RR (2005) Acc Chem Res 38:955–962CrossRefGoogle Scholar
  14. 14.
    Yandulov CV, Schrock RR (2003) Science 301:76–78CrossRefGoogle Scholar
  15. 15.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120–125CrossRefGoogle Scholar
  16. 16.
    Kinoshita E, Arashiba K, Kuriyama S, Miyake Y, Shimazaki R, Nakanishi H, Nishibayashi Y (2012) Organometallics 31:8437–8443CrossRefGoogle Scholar
  17. 17.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) J Am Chem Soc 136:9719–9731CrossRefGoogle Scholar
  18. 18.
    Nishibayashi Y (2015) C R Chim 18:776–784CrossRefGoogle Scholar
  19. 19.
    Anderson JS, Rittle J, Peters JC (2013) Nature 501:84–87CrossRefGoogle Scholar
  20. 20.
    Chatt J, Dilworth JR, Richards RL (1978) Chem Rev 78:589–625CrossRefGoogle Scholar
  21. 21.
    Chatt J, Pearman AJ, Richards RL (1975) Nature 253:39–40CrossRefGoogle Scholar
  22. 22.
    Hidai M, Tominari K, Uchida Y, Misono A (1969) J Chem Soc D Chem Commun:1392Google Scholar
  23. 23.
    Hidai M, Tominari K, Uchida Y (1972) J Am Chem Soc 94:110–114CrossRefGoogle Scholar
  24. 24.
    Hidai M, Mizobe Y (1995) Chem Rev 95:1115–1133CrossRefGoogle Scholar
  25. 25.
    Broda H, Hinrichsen S, Tuczek F (2013) Coord Chem Rev 257:587–598CrossRefGoogle Scholar
  26. 26.
    Dreher A, Stephan G, Tuczek F (2009) Adv Inorg Chem 61:367–405CrossRefGoogle Scholar
  27. 27.
    Römer R, Stephan G, Habeck C, Hoberg C, Peters G, Näther C, Tuczek F (2008) Eur J Inorg Chem 21:3258–3263CrossRefGoogle Scholar
  28. 28.
    Römer R, Gradert C, Bannwarth A, Peters G, Näther C, Tuczek F (2011) Dalton Trans 40:3229–3236CrossRefGoogle Scholar
  29. 29.
    Söncksen L, Römer R, Näther C, Peters G, Tuczek F (2011) Inorg Chim Acta 374:472–479CrossRefGoogle Scholar
  30. 30.
    Lehnert N, Tuczek F (1999) Inorg Chem 38:1659–1670CrossRefGoogle Scholar
  31. 31.
    Lehnert N, Tuczek F (1999) Inorg Chem 38:1671–1682CrossRefGoogle Scholar
  32. 32.
    Horn KH, Lehnert N, Tuczek F (2003) Inorg Chem 42:1076–1086CrossRefGoogle Scholar
  33. 33.
    Horn KH, Böres N, Lehnert N, Mersmann K, Näther C, Peters G, Tuczek F (2005) Inorg Chem 44:3016–3030CrossRefGoogle Scholar
  34. 34.
    Mersmann K, Horn KH, Böres N, Lehnert N, Studt F, Paulat F, Peters G, Ivanovic-Burmazovic I, van Eldik R, Tuczek F (2005) Inorg Chem 44:3031–3045CrossRefGoogle Scholar
  35. 35.
    Mersmann K, Hauser A, Lehnert N, Tuczek F (2006) Inorg Chem 45:5044–5056CrossRefGoogle Scholar
  36. 36.
    Dreher A, Mersmann K, Näther C, Ivanovic-Burmazovic I, van Eldik R, Tuczek F (2009) Inorg Chem 48:2078–2093CrossRefGoogle Scholar
  37. 37.
    Dreher A, Meyer S, Näther C, Westphal A, Broda H, Sarkar B, Kaim W, Kurz P, Tuczek F (2013) Inorg Chem 52:2335–2352CrossRefGoogle Scholar
  38. 38.
    Stephan G, Sivasankar C, Studt F, Tuczek F (2008) Chem A Eur J 14:644–652CrossRefGoogle Scholar
  39. 39.
    George TA, Tisdale RC (1988) Inorg Chem 27:2909–2912CrossRefGoogle Scholar
  40. 40.
    George TA, Ma L, Shailh SN, Tisdale RC, Zubieta J (1990) Inorg Chem 29:4789–4796CrossRefGoogle Scholar
  41. 41.
    Stephan G, Peters G, Lehnert N, Habeck CM, Näther C, Tuczek F (2005) Can J Chem 83:385–402CrossRefGoogle Scholar
  42. 42.
    George TA, Jackson MA (1988) Inorg Chem 27:924–926CrossRefGoogle Scholar
  43. 43.
    Weiss CJ, Groves AN, Mock MT, Dougherty WG, Kassel WS, Helm ML, DuBois DL, Bullock RM (2012) Dalton Trans 41:4517–4529CrossRefGoogle Scholar
  44. 44.
    Ogawa T, Kajita Y, Wasada-Tsutsui Y, Wasada H, Masuda H (2013) Inorg Chem 52:182–195CrossRefGoogle Scholar
  45. 45.
    Stephan G, Näther C, Sivasankar C, Tuczek F (2008) Inorg Chim Acta 361:1008–1019CrossRefGoogle Scholar
  46. 46.
    Hinrichsen S, Schnoor AC, Grund K, Flöser B, Schlimm A, Näther C, Krahmer J, Tuczek F (2016) Dalton Trans 45:14801–14813CrossRefGoogle Scholar
  47. 47.
    Fernández-Trujillo MJ, Basallote MG, Valerga P, Puerta MC (1993) J Chem Soc Dalton Trans:923–926Google Scholar
  48. 48.
    Schnoor AC, Gradert C, Schleupner M, Krahmer J, Tuczek F (2015) Z Anorg All Chem 641:83–90CrossRefGoogle Scholar
  49. 49.
    Green LM, Meek DW (1990) Polyhedron 9:35–45CrossRefGoogle Scholar
  50. 50.
    Dahlenburg L, Pietsch B (1986) Z Naturforsch B Anorg Chem Org Chem 41:70–75Google Scholar
  51. 51.
    Batke S, Kothe T, Haas M, Wadepohl H, Ballmann J (2016) Dalton Trans 45:3528–3540CrossRefGoogle Scholar
  52. 52.
    Bujard M, Gouverneur V, Mioskowski C (1999) J Org Chem 64:2119–2123CrossRefGoogle Scholar
  53. 53.
    Kostas ID (2001) J Organomet Chem 626:221–226CrossRefGoogle Scholar
  54. 54.
    Stoffelbach F, Saurenz D, Poli R (2001) Eur J Inorg Chem:2699–2703Google Scholar
  55. 55.
    Owens BE, Poli R, Rheingold AL (1989) Inorg Chem 28:1456–1462CrossRefGoogle Scholar
  56. 56.
    Poli R, Krueger ST, Mattamana SP, Dunbar KR, Hanhua Z (1998) Inorg Synth 32:198–203Google Scholar
  57. 57.
    Arduengo III AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363CrossRefGoogle Scholar
  58. 58.
    Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655CrossRefGoogle Scholar
  59. 59.
    Scholl M, Trnka TM, Morgan JP, Grubbs RH (1999) Tetrahedron Lett 40:2247–2250CrossRefGoogle Scholar
  60. 60.
    Herrmann WA, Köcher C (1997) Angew Chem 109:2256–2282; Angew Chem Int Ed (1997) 36:2162–2187Google Scholar
  61. 61.
    Fürstner A, Alcarazo M, Radkowski K, Lehmann CW (2008) Angew Chem 120:8426–8430; Angew Chem Int Ed (2008) 47:8302–8306Google Scholar
  62. 62.
    Dorta R, Stevens ED, Hoff CD, Nolan SP (2003) J Am Chem Soc 125:10490–10491CrossRefGoogle Scholar
  63. 63.
    Hillier AC, Sommer WJ, Yong BS, Petersen JL, Cavallo L, Nolan SP (2003) Organometallics 22:4322–4326CrossRefGoogle Scholar
  64. 64.
    Gradert C, Krahmer J, Sönnichsen FD, Näther C, Tuczek F (2013) Eur J Inorg Chem:3943–3955Google Scholar
  65. 65.
    Gradert C, Krahmer J, Sönnichsen FD, Näther C, Tuczek F (2014) J Organomet Chem 770:61–68CrossRefGoogle Scholar
  66. 66.
    Gradert C, Stucke N, Krahmer J, Näther C, Tuczek F (2015) Chem A Eur J 21:1130–1137CrossRefGoogle Scholar
  67. 67.
    Krahmer J, Broda H, Peters G, Näther C, Thimm W, Tuczek F (2011) Eur J Inorg Chem:4377–4386Google Scholar
  68. 68.
    Krahmer J, Peters G, Tuczek F (2014) Z Anorg Allg Chem 640:2834–2838CrossRefGoogle Scholar
  69. 69.
    Söncksen L, Gradert C, Krahmer J, Näther C, Tuczek F (2013) Inorg Chem 52:6576–6589CrossRefGoogle Scholar
  70. 70.
    Broda H, Hinrichsen S, Krahmer J, Näther C, Tuczek F (2014) Dalton Trans 43:2007–2012CrossRefGoogle Scholar
  71. 71.
    Broda H, Krahmer J, Tuczek F (2014) Eur J Inorg Chem:3564–3571Google Scholar
  72. 72.
    Jacobsen H, Correa A, Costabile C, Cavallo L (2006) J Organomet Chem 691:4350–4358CrossRefGoogle Scholar
  73. 73.
    Cotton FA, Kraihanzel CS (1962) J Am Chem Soc 84:4432–4438CrossRefGoogle Scholar
  74. 74.
    Hahn FE, Jahnke MC, Pape T (2006) Organometallics 25:5927–5936CrossRefGoogle Scholar
  75. 75.
    Lazarowych NJ, Morris RH, Ressner JM (1986) Inorg Chem 25:3926–3932CrossRefGoogle Scholar
  76. 76.
    Yuki M, Miyake Y, Nishibayashi Y (2009) Organometallics 28:5821–5827CrossRefGoogle Scholar
  77. 77.
    Yuki M, Midorikawa T, Miyake Y, Nishibayashi Y (2009) Organometallics 28:4741–4746CrossRefGoogle Scholar
  78. 78.
    Schnöckel H, Schunck S (1987) Z Anorg Allg Chem 548:161–164CrossRefGoogle Scholar
  79. 79.
    Brupbacher-Gatehouse B, Brupbacher T (1999) J Chem Phys 111:6300–6310CrossRefGoogle Scholar
  80. 80.
    Niecke E, Engelmann M, Zorn H, Krebs B, Henkel G (1980) Angew Chem 92:738–739; Angew Chem Int Ed Engl (1980) 19:710–712Google Scholar
  81. 81.
    Niecke E, Zorn H, Krebs B, Henkel G (1980) Angew Chem 92:737–738; Angew Chem Int Ed Engl (1980) 19:709–710Google Scholar
  82. 82.
    Keck H, Kuchen W, Renneberg H, Terlouw JK, Visser HC (1991) Angew Chem 103:331–333; Angew Chem Int Ed (1991) 30:318–320Google Scholar
  83. 83.
    Klatt K, Stephan G, Peters G, Tuczek F (2008) Inorg Chem 47:6541–6550CrossRefGoogle Scholar
  84. 84.
    Seitz T, Muth A, Huttner G (1994) Chem Ber 127:1837–1842CrossRefGoogle Scholar
  85. 85.
    Fox MA, Campbell KA, Kyba EP (1981) Inorg Chem 20:4163–4165CrossRefGoogle Scholar
  86. 86.
    Studt F, Tuczek F (2006) J Comput Chem 27:1278–1291CrossRefGoogle Scholar
  87. 87.
    Muth A, Walter O, Huttner G, Asam A, Zsolnai L, Emmerich C (1994) J Organomet Chem 468:149–163CrossRefGoogle Scholar
  88. 88.
    Janssen BC, Asam A, Huttner G, Sernau V, Zsolnai L (1994) Chem Ber 127:501–506CrossRefGoogle Scholar
  89. 89.
    Poli R, Krueger ST, Mattamana SP, Dunbar KR, Hanhua Z (1998) Inorg Synth 32:198–203Google Scholar
  90. 90.
    Tolman CA (1977) Chem Rev 77:313–348CrossRefGoogle Scholar
  91. 91.
    Brookhart M, Grant B, Volpe AF (1992) Organometallics 11:3920–3922CrossRefGoogle Scholar
  92. 92.
    Hinrichsen S, Kindjajev A, Adomeit S, Krahmer J, Näther C, Tuczek F (2016) Inorg Chem 55:8712–8722CrossRefGoogle Scholar
  93. 93.
    Card PJ, Hitz WD (1984) J Am Chem Soc 106:5348–5350CrossRefGoogle Scholar
  94. 94.
    Walter O, Huttner G, Zsolnai L (1993) Z Naturforsch B Chem Sci 48:636–640CrossRefGoogle Scholar
  95. 95.
    Hofacker P, Friebel C, Dehnicke K, Bäuml P, Hiller W, Strahle J (1989) Z Naturforsch B Chem Sci 44:1161–1166CrossRefGoogle Scholar
  96. 96.
    Günther H (1972) Angew Chem 84:907–920; Angew Chem Int Ed Engl (1972) 11:861–874Google Scholar
  97. 97.
    Haymore BL, Hughes M, Mason J, Richards RL (1988) J Chem Soc Dalton Trans:2935–2940Google Scholar
  98. 98.
    Donovan-Mtsunzi S, Richards RL, Mason J (1984) J Chem Soc Dalton Trans:1329–1332Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nadja Stucke
    • 1
  • Thomas Weyrich
    • 1
  • Mareike Pfeil
    • 1
  • Katharina Grund
    • 1
  • Andrei Kindjajev
    • 1
  • Felix Tuczek
    • 1
    Email author
  1. 1.Institute of Inorganic ChemistryChristian Albrechts University KielKielGermany

Personalised recommendations