Catalytic Nitrogen Fixation Using Molybdenum–Dinitrogen Complexes as Catalysts

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)

Abstract

This chapter describes recent advances of molybdenum-catalyzed catalytic nitrogen fixation such as catalytic formation of silylamine and ammonia from dinitrogen under ambient reaction conditions. Hidai, Nishibayashi, Masuda, Mézailles, and their coworkers have achieved the molybdenum-catalyzed silylation and Schrock, Nishibayashi, and their coworkers have achieved the molybdenum-catalyzed formation of ammonia from nitrogen gas under ambient reaction conditions.

Keywords

Ammonia Catalyst Dinitrogen Molybdenum Reduction Silylamine 

References

  1. 1.
    Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun:621–622. doi: 10.1039/c19650000621
  2. 2.
    Yamamoto A, Kitazume S, Pu LS, Ikeda S (1967) Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine) cobalt complex coordinated with molecular nitrogen. Chem Commun:79–80. doi: 10.1039/c19670000079
  3. 3.
    Hidai M, Tominari K, Uchida Y, Misono A (1969) A trans-dinitrogen complex of molybdenum. Chem Commun:1392–1392. doi: 10.1039/c29690001392
  4. 4.
    Chatt J, Pearman AJ, Richards RL (1975) The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment. Nature 253:39–40. doi: 10.1038/253039b0 CrossRefGoogle Scholar
  5. 5.
    Chatt J, Pearman AJ, Richards RL (1977) Conversion of dinitrogen in its molybdenum and tungsten complexes into ammonia and possible relevance to the nitrogenase reaction. J Chem Soc Dalton Trans:1852–1860. doi: 10.1039/dt9770001852
  6. 6.
    Chatt J, Pearman AJ, Richards RL (1975) Diazenido (iminonitrosyl) (N2H), hydrazido(2–) (N2H2), and hydrazido(1–) (N2H3) ligands as intermediates in the reduction of ligating dinitrogen to ammonia. J Organomet Chem 101:C45–C47. doi: 10.1016/s0022-328x(00)92481-1 CrossRefGoogle Scholar
  7. 7.
    Chatt J, Pearman AJ, Richards RL (1978) Hydrazido(2–)-complexes of molybdenum and tungsten formed from dinitrogen complexes by protonation and ligand exchange. J Chem Soc Dalton Trans:1766–1776. doi: 10.1039/dt9780001766
  8. 8.
    Anderson SN, Fakley ME, Richards RL, Chatt J (1981) Hydrazido(2–)-complexes as intermediates in the conversion of ligating dinitrogen into ammonia and hydrazine. J Chem Soc Dalton Trans:1973–1980. doi: 10.1039/dt9810001973
  9. 9.
    Chatt J (1975) The reactions of dinitrogen in its mononuclear complexes. J Organomet Chem 100:17–28. doi: 10.1016/s0022-328x(00)88931-7 CrossRefGoogle Scholar
  10. 10.
    Chatt J, Richards RL (1982) The reactions of dinitrogen in its metal complexes. J Organomet Chem 239:65–77. doi: 10.1016/s0022-328x(00)94103-2 CrossRefGoogle Scholar
  11. 11.
    Hidai M, Mizobe Y (1995) Recent advances in the chemistry of dinitrogen complexes. Chem Rev 95:1115–1133. doi: 10.1021/cr00036a008 CrossRefGoogle Scholar
  12. 12.
    Hidai M, Ishii Y (1996) Toward direct synthesis of organonitrogen compounds from dinitrogen: the chemistry of diazoalkane complexes derived from dinitrogen complexes. Bull Chem Soc Jpn 69:819–831. doi: 10.1246/bcsj.69.819 CrossRefGoogle Scholar
  13. 13.
    Fryzuk MD, Johnson SA (2000) The continuing story of dinitrogen activation. Coord Chem Rev 200–202:379–409. doi: 10.1016/s0010-8545(00)00264-2 CrossRefGoogle Scholar
  14. 14.
    Shaver MP, Fryzuk MD (2003) Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes. Adv Synth Catal 345:1061–1076. doi: 10.1002/adsc.200303081 CrossRefGoogle Scholar
  15. 15.
    MacKay BA, Fryzuk MD (2004) Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem Rev 104:385–401. doi: 10.1021/cr020610c CrossRefGoogle Scholar
  16. 16.
    Schrock RR (2005) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc Chem Res 38:955–962. doi: 10.1021/ar0501121 CrossRefGoogle Scholar
  17. 17.
    Schrock RR (2008) Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew Chem Int Ed 47:5512–5522. doi: 10.1002/anie.200705246 CrossRefGoogle Scholar
  18. 18.
    Hinrichsen S, Broda H, Gradert C, Söncksen L, Tuczek F (2012) Recent developments in synthetic nitrogen fixation. Annu Rep Prog Chem Sect A Inorg Chem 108:17–47. doi: 10.1039/c2ic90033e CrossRefGoogle Scholar
  19. 19.
    Nishibayashi Y (2012) Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. Dalton Trans 41:7447–7453. doi: 10.1039/c2dt30105a CrossRefGoogle Scholar
  20. 20.
    Broda H, Hinrichsen S, Tuczek F (2013) Molybdenum(0) dinitrogen complexes with polydentate phosphine ligands for synthetic nitrogen fixation: geometric and electronic structure contributions to reactivity. Coord Chem Rev 257:587–598. doi: 10.1016/j.ccr.2012.05.010 CrossRefGoogle Scholar
  21. 21.
    Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564. doi: 10.1016/j.ccr.2013.02.010 CrossRefGoogle Scholar
  22. 22.
    Sivasankar C, Baskaran S, Tamizmani M, Ramakrishna K (2014) Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. J Organomet Chem 752:44–58. doi: 10.1016/j.jorganchem.2013.11.024 CrossRefGoogle Scholar
  23. 23.
    Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Reactivity of dinitrogen bound to mid- and late-transition-metal centers. Eur J Inorg Chem:567–598. doi: 10.1002/ejic.201403041
  24. 24.
    Nishibayashi Y (2015) Molybdenum-catalyzed reduction of molecular dinitrogen into ammonia under ambient reaction conditions. C R Chim 18:776–784. doi: 10.1016/j.crci.2015.01.014 CrossRefGoogle Scholar
  25. 25.
    Nishibayashi Y (2015) Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg Chem 54:9234–9247. doi: 10.1021/acs.inorgchem.5b00881 CrossRefGoogle Scholar
  26. 26.
    Tanaka H, Nishibayashi Y, Yoshizawa K (2016) Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc Chem Res 49:987–995. doi: 10.1021/acs.accounts.6b00033 CrossRefGoogle Scholar
  27. 27.
    Ohki Y, Seino H (2016) N-heterocyclic carbenes as supporting ligands in transition metal complexes of N2. Dalton Trans 45:874–880. doi: 10.1039/c5dt04298d CrossRefGoogle Scholar
  28. 28.
    Tanabe Y, Nishibayashi Y (2016) Catalytic dinitrogen fixation to form ammonia at ambient reaction conditions using transition metal–dinitrogen complexes. Chem Rec 16:1549–1577. doi: 10.1002/tcr.201600025 CrossRefGoogle Scholar
  29. 29.
    Flöser BM, Tuczek F (2016) Synthetic nitrogen fixation with mononuclear molybdenum complexes: electronic-structural and mechanistic insights from DFT. Coord Chem Rev. doi: 10.1016/j.ccr.2016.11.003 Google Scholar
  30. 30.
    Shiina K (1972) Reductive silylation of molecular nitrogen via fixation to tris(trialkylsilyl)amine. J Am Chem Soc 94:9266–9267. doi: 10.1021/ja00781a068 CrossRefGoogle Scholar
  31. 31.
    Komori K, Oshita H, Mizobe Y, Hidai M (1989) Catalytic conversion of molecular nitrogen into silylamines using molybdenum and tungsten dinitrogen complexes. J Am Chem Soc 111:1939–1940. doi: 10.1021/ja00187a092 CrossRefGoogle Scholar
  32. 32.
    Tanaka H, Sasada A, Kouno T, Yuki M, Miyake Y, Nakanishi H, Nishibayashi Y, Yoshizawa K (2011) Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J Am Chem Soc 133:3498–3506. doi: 10.1021/ja109181n CrossRefGoogle Scholar
  33. 33.
    Ogawa T, Kajita Y, Wasada-Tsutsui Y, Wasada H, Masuda H (2013) Preparation, characterization, and reactivity of dinitrogen molybdenum complexes with bis(diphenylphosphino)amine derivative ligands that form a unique 4-membered P–N–P chelate ring. Inorg Chem 52:182–195. doi: 10.1021/ic301577a CrossRefGoogle Scholar
  34. 34.
    Liao Q, Saffon-Merceron N, Mézailles N (2014) Catalytic dinitrogen reduction at the molybdenum center promoted by a bulky tetradentate phosphine ligand. Angew Chem Int Ed 53:14206–14210. doi: 10.1002/anie.201408664 CrossRefGoogle Scholar
  35. 35.
    Liao Q, Saffon-Merceron N, Mézailles N (2015) N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal 5:6902–6906. doi: 10.1021/acscatal.5b01626 CrossRefGoogle Scholar
  36. 36.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2016) Azaferrocene-based PNP-type pincer ligand: synthesis of molybdenum, chromium, and iron complexes and reactivity toward nitrogen fixation. Eur J Inorg Chem:4856–4861. doi: 10.1002/ejic.201601051
  37. 37.
    Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78. doi: 10.1126/science.1085326 CrossRefGoogle Scholar
  38. 38.
    Yandulov DV, Schrock RR (2002) Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex. J Am Chem Soc 124:6252–6253. doi: 10.1021/ja020186x CrossRefGoogle Scholar
  39. 39.
    Yandulov DV, Schrock RR, Rheingold AL, Ceccarelli C, Davis WM (2003) Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents. Inorg Chem 42:796–813. doi: 10.1021/ic020505l CrossRefGoogle Scholar
  40. 40.
    Yandulov DV, Schrock RR (2005) Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes. Inorg Chem 44:1103–1117. doi: 10.1021/ic040095w CrossRefGoogle Scholar
  41. 41.
    Weare WW, Dai X, Byrnes MJ, Chin JM, Schrock RR, Müller P (2006) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Proc Natl Acad Sci U S A 103:17099–17106. doi: 10.1073/pnas.0602778103 CrossRefGoogle Scholar
  42. 42.
    Munisamy T, Schrock RR (2012) An electrochemical investigation of intermediates and processes involved in the catalytic reduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N). Dalton Trans 41:130–137. doi: 10.1039/c1dt11287b CrossRefGoogle Scholar
  43. 43.
    Ritleng V, Yandulov DV, Weare WW, Schrock RR, Hock AS, Davis WM (2004) Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. An examination of some catalyst variations for the catalytic reduction of dinitrogen. J Am Chem Soc 126:6150–6163. doi: 10.1021/ja0306415 CrossRefGoogle Scholar
  44. 44.
    Reithofer MR, Schrock RR, Müller P (2010) Synthesis of [(DPPNCH2CH2)3N]3− molybdenum complexes (DPP = 3,5-(2,5-diisopropylpyrrolyl)2C6H3) and studies relevant to catalytic reduction of dinitrogen. J Am Chem Soc 132:8349–8358. doi: 10.1021/ja1008213 CrossRefGoogle Scholar
  45. 45.
    Weare WW, Schrock RR, Hock AS, Müller P (2006) Synthesis of molybdenum complexes that contain “hybrid” triamidoamine ligands, [(hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3−, and studies relevant to catalytic reduction of dinitrogen. Inorg Chem 45:9185–9196. doi: 10.1021/ic0613457 CrossRefGoogle Scholar
  46. 46.
    Chin JM, Schrock RR, Müller P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904–7916. doi: 10.1021/ic100856n CrossRefGoogle Scholar
  47. 47.
    Smythe NC, Schrock RR, Müller P, Weare WW (2006) Synthesis of [(HIPTNCH2CH2)3N]V compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of vanadium for the reduction of dinitrogen to ammonia. Inorg Chem 45:9197–9205. doi: 10.1021/ic061554r CrossRefGoogle Scholar
  48. 48.
    Smythe NC, Schrock RR, Müller P, Weare WW (2006) Synthesis of [(HIPTCH2CH2)3N]Cr compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of chromium for the reduction of dinitrogen to ammonia. Inorg Chem 45:7111–7118. doi: 10.1021/ic060549k CrossRefGoogle Scholar
  49. 49.
    Yandulov DV, Schrock RR (2005) Synthesis of tungsten complexes that contain hexaisopropylterphenyl-substituted triamidoamine ligands, and reactions relevant to the reduction of dinitrogen to ammonia. Can J Chem 83:341–357. doi: 10.1139/v05-013 CrossRefGoogle Scholar
  50. 50.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125. doi: 10.1038/nchem.906 CrossRefGoogle Scholar
  51. 51.
    Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y (2014) Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat Commun 5:3737. doi: 10.1038/ncomms4737 Google Scholar
  52. 52.
    Kinoshita E, Arashiba K, Kuriyama S, Miyake Y, Shimazaki R, Nakanishi H, Nishibayashi Y (2012) Synthesis and catalytic activity of molybdenum–dinitrogen complexes bearing unsymmetric PNP-type pincer ligands. Organometallics 31:8437–8443. doi: 10.1021/om301046t CrossRefGoogle Scholar
  53. 53.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J Am Chem Soc 136:9719–9731. doi: 10.1021/ja5044243 CrossRefGoogle Scholar
  54. 54.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum–dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. Chem Sci 6:3940–3951. doi: 10.1039/c5sc00545k CrossRefGoogle Scholar
  55. 55.
    Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J Am Chem Soc 137:5666–5669. doi: 10.1021/jacs.5b02579 CrossRefGoogle Scholar
  56. 56.
    Tanaka H, Yoshizawa K (2017) Computational approach to nitrogen fixation on molybdenum–dinitrogen complexes. Top Organomet Chem 60:171–196. doi: 10.1007/3418_2016_7

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations