Skip to main content

Catalytic Nitrogen Fixation Using Molybdenum–Dinitrogen Complexes as Catalysts

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 60))

Abstract

This chapter describes recent advances of molybdenum-catalyzed catalytic nitrogen fixation such as catalytic formation of silylamine and ammonia from dinitrogen under ambient reaction conditions. Hidai, Nishibayashi, Masuda, Mézailles, and their coworkers have achieved the molybdenum-catalyzed silylation and Schrock, Nishibayashi, and their coworkers have achieved the molybdenum-catalyzed formation of ammonia from nitrogen gas under ambient reaction conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen AD, Senoff CV (1965) Nitrogenopentammineruthenium(II) complexes. Chem Commun:621–622. doi:10.1039/c19650000621

  2. Yamamoto A, Kitazume S, Pu LS, Ikeda S (1967) Study of the fixation of nitrogen. Isolation of tris(triphenylphosphine) cobalt complex coordinated with molecular nitrogen. Chem Commun:79–80. doi:10.1039/c19670000079

  3. Hidai M, Tominari K, Uchida Y, Misono A (1969) A trans-dinitrogen complex of molybdenum. Chem Commun:1392–1392. doi:10.1039/c29690001392

  4. Chatt J, Pearman AJ, Richards RL (1975) The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment. Nature 253:39–40. doi:10.1038/253039b0

    Article  CAS  Google Scholar 

  5. Chatt J, Pearman AJ, Richards RL (1977) Conversion of dinitrogen in its molybdenum and tungsten complexes into ammonia and possible relevance to the nitrogenase reaction. J Chem Soc Dalton Trans:1852–1860. doi:10.1039/dt9770001852

  6. Chatt J, Pearman AJ, Richards RL (1975) Diazenido (iminonitrosyl) (N2H), hydrazido(2–) (N2H2), and hydrazido(1–) (N2H3) ligands as intermediates in the reduction of ligating dinitrogen to ammonia. J Organomet Chem 101:C45–C47. doi:10.1016/s0022-328x(00)92481-1

    Article  CAS  Google Scholar 

  7. Chatt J, Pearman AJ, Richards RL (1978) Hydrazido(2–)-complexes of molybdenum and tungsten formed from dinitrogen complexes by protonation and ligand exchange. J Chem Soc Dalton Trans:1766–1776. doi:10.1039/dt9780001766

  8. Anderson SN, Fakley ME, Richards RL, Chatt J (1981) Hydrazido(2–)-complexes as intermediates in the conversion of ligating dinitrogen into ammonia and hydrazine. J Chem Soc Dalton Trans:1973–1980. doi:10.1039/dt9810001973

  9. Chatt J (1975) The reactions of dinitrogen in its mononuclear complexes. J Organomet Chem 100:17–28. doi:10.1016/s0022-328x(00)88931-7

    Article  CAS  Google Scholar 

  10. Chatt J, Richards RL (1982) The reactions of dinitrogen in its metal complexes. J Organomet Chem 239:65–77. doi:10.1016/s0022-328x(00)94103-2

    Article  CAS  Google Scholar 

  11. Hidai M, Mizobe Y (1995) Recent advances in the chemistry of dinitrogen complexes. Chem Rev 95:1115–1133. doi:10.1021/cr00036a008

    Article  CAS  Google Scholar 

  12. Hidai M, Ishii Y (1996) Toward direct synthesis of organonitrogen compounds from dinitrogen: the chemistry of diazoalkane complexes derived from dinitrogen complexes. Bull Chem Soc Jpn 69:819–831. doi:10.1246/bcsj.69.819

    Article  CAS  Google Scholar 

  13. Fryzuk MD, Johnson SA (2000) The continuing story of dinitrogen activation. Coord Chem Rev 200–202:379–409. doi:10.1016/s0010-8545(00)00264-2

    Article  Google Scholar 

  14. Shaver MP, Fryzuk MD (2003) Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes. Adv Synth Catal 345:1061–1076. doi:10.1002/adsc.200303081

    Article  CAS  Google Scholar 

  15. MacKay BA, Fryzuk MD (2004) Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem Rev 104:385–401. doi:10.1021/cr020610c

    Article  CAS  Google Scholar 

  16. Schrock RR (2005) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc Chem Res 38:955–962. doi:10.1021/ar0501121

    Article  CAS  Google Scholar 

  17. Schrock RR (2008) Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew Chem Int Ed 47:5512–5522. doi:10.1002/anie.200705246

    Article  CAS  Google Scholar 

  18. Hinrichsen S, Broda H, Gradert C, Söncksen L, Tuczek F (2012) Recent developments in synthetic nitrogen fixation. Annu Rep Prog Chem Sect A Inorg Chem 108:17–47. doi:10.1039/c2ic90033e

    Article  CAS  Google Scholar 

  19. Nishibayashi Y (2012) Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. Dalton Trans 41:7447–7453. doi:10.1039/c2dt30105a

    Article  CAS  Google Scholar 

  20. Broda H, Hinrichsen S, Tuczek F (2013) Molybdenum(0) dinitrogen complexes with polydentate phosphine ligands for synthetic nitrogen fixation: geometric and electronic structure contributions to reactivity. Coord Chem Rev 257:587–598. doi:10.1016/j.ccr.2012.05.010

    Article  CAS  Google Scholar 

  21. Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564. doi:10.1016/j.ccr.2013.02.010

    Article  CAS  Google Scholar 

  22. Sivasankar C, Baskaran S, Tamizmani M, Ramakrishna K (2014) Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. J Organomet Chem 752:44–58. doi:10.1016/j.jorganchem.2013.11.024

    Article  CAS  Google Scholar 

  23. Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Reactivity of dinitrogen bound to mid- and late-transition-metal centers. Eur J Inorg Chem:567–598. doi:10.1002/ejic.201403041

  24. Nishibayashi Y (2015) Molybdenum-catalyzed reduction of molecular dinitrogen into ammonia under ambient reaction conditions. C R Chim 18:776–784. doi:10.1016/j.crci.2015.01.014

    Article  CAS  Google Scholar 

  25. Nishibayashi Y (2015) Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. Inorg Chem 54:9234–9247. doi:10.1021/acs.inorgchem.5b00881

    Article  CAS  Google Scholar 

  26. Tanaka H, Nishibayashi Y, Yoshizawa K (2016) Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc Chem Res 49:987–995. doi:10.1021/acs.accounts.6b00033

    Article  CAS  Google Scholar 

  27. Ohki Y, Seino H (2016) N-heterocyclic carbenes as supporting ligands in transition metal complexes of N2. Dalton Trans 45:874–880. doi:10.1039/c5dt04298d

    Article  CAS  Google Scholar 

  28. Tanabe Y, Nishibayashi Y (2016) Catalytic dinitrogen fixation to form ammonia at ambient reaction conditions using transition metal–dinitrogen complexes. Chem Rec 16:1549–1577. doi:10.1002/tcr.201600025

    Article  CAS  Google Scholar 

  29. Flöser BM, Tuczek F (2016) Synthetic nitrogen fixation with mononuclear molybdenum complexes: electronic-structural and mechanistic insights from DFT. Coord Chem Rev. doi:10.1016/j.ccr.2016.11.003

    Google Scholar 

  30. Shiina K (1972) Reductive silylation of molecular nitrogen via fixation to tris(trialkylsilyl)amine. J Am Chem Soc 94:9266–9267. doi:10.1021/ja00781a068

    Article  CAS  Google Scholar 

  31. Komori K, Oshita H, Mizobe Y, Hidai M (1989) Catalytic conversion of molecular nitrogen into silylamines using molybdenum and tungsten dinitrogen complexes. J Am Chem Soc 111:1939–1940. doi:10.1021/ja00187a092

    Article  CAS  Google Scholar 

  32. Tanaka H, Sasada A, Kouno T, Yuki M, Miyake Y, Nakanishi H, Nishibayashi Y, Yoshizawa K (2011) Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J Am Chem Soc 133:3498–3506. doi:10.1021/ja109181n

    Article  CAS  Google Scholar 

  33. Ogawa T, Kajita Y, Wasada-Tsutsui Y, Wasada H, Masuda H (2013) Preparation, characterization, and reactivity of dinitrogen molybdenum complexes with bis(diphenylphosphino)amine derivative ligands that form a unique 4-membered P–N–P chelate ring. Inorg Chem 52:182–195. doi:10.1021/ic301577a

    Article  CAS  Google Scholar 

  34. Liao Q, Saffon-Merceron N, Mézailles N (2014) Catalytic dinitrogen reduction at the molybdenum center promoted by a bulky tetradentate phosphine ligand. Angew Chem Int Ed 53:14206–14210. doi:10.1002/anie.201408664

    Article  CAS  Google Scholar 

  35. Liao Q, Saffon-Merceron N, Mézailles N (2015) N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal 5:6902–6906. doi:10.1021/acscatal.5b01626

    Article  CAS  Google Scholar 

  36. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2016) Azaferrocene-based PNP-type pincer ligand: synthesis of molybdenum, chromium, and iron complexes and reactivity toward nitrogen fixation. Eur J Inorg Chem:4856–4861. doi:10.1002/ejic.201601051

  37. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78. doi:10.1126/science.1085326

    Article  CAS  Google Scholar 

  38. Yandulov DV, Schrock RR (2002) Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex. J Am Chem Soc 124:6252–6253. doi:10.1021/ja020186x

    Article  CAS  Google Scholar 

  39. Yandulov DV, Schrock RR, Rheingold AL, Ceccarelli C, Davis WM (2003) Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents. Inorg Chem 42:796–813. doi:10.1021/ic020505l

    Article  CAS  Google Scholar 

  40. Yandulov DV, Schrock RR (2005) Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes. Inorg Chem 44:1103–1117. doi:10.1021/ic040095w

    Article  CAS  Google Scholar 

  41. Weare WW, Dai X, Byrnes MJ, Chin JM, Schrock RR, Müller P (2006) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Proc Natl Acad Sci U S A 103:17099–17106. doi:10.1073/pnas.0602778103

    Article  CAS  Google Scholar 

  42. Munisamy T, Schrock RR (2012) An electrochemical investigation of intermediates and processes involved in the catalytic reduction of dinitrogen by [HIPTN3N]Mo (HIPTN3N = (3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2)3N). Dalton Trans 41:130–137. doi:10.1039/c1dt11287b

    Article  CAS  Google Scholar 

  43. Ritleng V, Yandulov DV, Weare WW, Schrock RR, Hock AS, Davis WM (2004) Molybdenum triamidoamine complexes that contain hexa-tert-butylterphenyl, hexamethylterphenyl, or p-bromohexaisopropylterphenyl substituents. An examination of some catalyst variations for the catalytic reduction of dinitrogen. J Am Chem Soc 126:6150–6163. doi:10.1021/ja0306415

    Article  CAS  Google Scholar 

  44. Reithofer MR, Schrock RR, Müller P (2010) Synthesis of [(DPPNCH2CH2)3N]3− molybdenum complexes (DPP = 3,5-(2,5-diisopropylpyrrolyl)2C6H3) and studies relevant to catalytic reduction of dinitrogen. J Am Chem Soc 132:8349–8358. doi:10.1021/ja1008213

    Article  CAS  Google Scholar 

  45. Weare WW, Schrock RR, Hock AS, Müller P (2006) Synthesis of molybdenum complexes that contain “hybrid” triamidoamine ligands, [(hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3−, and studies relevant to catalytic reduction of dinitrogen. Inorg Chem 45:9185–9196. doi:10.1021/ic0613457

    Article  CAS  Google Scholar 

  46. Chin JM, Schrock RR, Müller P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904–7916. doi:10.1021/ic100856n

    Article  CAS  Google Scholar 

  47. Smythe NC, Schrock RR, Müller P, Weare WW (2006) Synthesis of [(HIPTNCH2CH2)3N]V compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of vanadium for the reduction of dinitrogen to ammonia. Inorg Chem 45:9197–9205. doi:10.1021/ic061554r

    Article  CAS  Google Scholar 

  48. Smythe NC, Schrock RR, Müller P, Weare WW (2006) Synthesis of [(HIPTCH2CH2)3N]Cr compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of chromium for the reduction of dinitrogen to ammonia. Inorg Chem 45:7111–7118. doi:10.1021/ic060549k

    Article  CAS  Google Scholar 

  49. Yandulov DV, Schrock RR (2005) Synthesis of tungsten complexes that contain hexaisopropylterphenyl-substituted triamidoamine ligands, and reactions relevant to the reduction of dinitrogen to ammonia. Can J Chem 83:341–357. doi:10.1139/v05-013

    Article  CAS  Google Scholar 

  50. Arashiba K, Miyake Y, Nishibayashi Y (2011) A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem 3:120–125. doi:10.1038/nchem.906

    Article  CAS  Google Scholar 

  51. Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y (2014) Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat Commun 5:3737. doi:10.1038/ncomms4737

    Google Scholar 

  52. Kinoshita E, Arashiba K, Kuriyama S, Miyake Y, Shimazaki R, Nakanishi H, Nishibayashi Y (2012) Synthesis and catalytic activity of molybdenum–dinitrogen complexes bearing unsymmetric PNP-type pincer ligands. Organometallics 31:8437–8443. doi:10.1021/om301046t

    Article  CAS  Google Scholar 

  53. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J Am Chem Soc 136:9719–9731. doi:10.1021/ja5044243

    Article  CAS  Google Scholar 

  54. Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum–dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. Chem Sci 6:3940–3951. doi:10.1039/c5sc00545k

    Article  CAS  Google Scholar 

  55. Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Catalytic reduction of dinitrogen to ammonia by use of molybdenum–nitride complexes bearing a tridentate triphosphine as catalysts. J Am Chem Soc 137:5666–5669. doi:10.1021/jacs.5b02579

    Article  CAS  Google Scholar 

  56. Tanaka H, Yoshizawa K (2017) Computational approach to nitrogen fixation on molybdenum–dinitrogen complexes. Top Organomet Chem 60:171–196. doi:10.1007/3418_2016_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Nishibayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eizawa, A., Nishibayashi, Y. (2017). Catalytic Nitrogen Fixation Using Molybdenum–Dinitrogen Complexes as Catalysts. In: Nishibayashi, Y. (eds) Nitrogen Fixation. Topics in Organometallic Chemistry, vol 60. Springer, Cham. https://doi.org/10.1007/3418_2016_10

Download citation

Publish with us

Policies and ethics