Advertisement

Dinuclear Metal Complex-Mediated Formation of CO2-Based Polycarbonates

  • Charles Romain
  • Arnaud Thevenon
  • Prabhjot K. Saini
  • Charlotte K. WilliamsEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 53)

Abstract

This review describes selected metal catalysts for the copolymerisation of epoxides and carbon dioxide to produce polycarbonates. It highlights kinetic and mechanistic studies which have implicated di- or (multi-) metallic pathways for this catalysis and the subsequent development of highly active and selective di-/(multi-) nuclear catalysts. The emphasis is on homogeneous di-/bimetallic catalysts.

Keywords

Bimetallic Carbon dioxide chemistry Catalysis Dinuclear catalysts Homogeneous catalysis Polycarbonates Polymerisation Polymerisation catalysis 

Abbreviations

BDI

β-Diiminate

BOXDIPY

1,9-bis(2-oxidophenyl)dipyrrinate

CHC

Cyclohexylene carbonate

CHO

Cyclohexene oxide

CPO

Cyclopentene oxide

dipp

2,5-diisopropylphenyl

DMAP

4-Dimethylaminopyridine

DMC

Double Metal Cyanide

GPE

Glycidyl phenyl ether

HH

Head to head

N-MeIm

N-MethylImidazole

PC

Propylene carbonate

PCHC

P(cyclohexylene carbonate)

PO

Propylene oxide

PPC

Poly(propylene carbonate)

PPN

Bis(triphenylphosphine)iminium

PSC

Poly(styrene carbonate)

SO

Styrene oxide

TH

Tail to head

TOF

Turn over frequency

TON

Turn over number (mol/mol in this review)

TT

Tail to tail

References

  1. 1.
    Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81CrossRefGoogle Scholar
  2. 2.
    MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669CrossRefGoogle Scholar
  3. 3.
    Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49(23):10765–10780CrossRefGoogle Scholar
  4. 4.
    von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43(23):7982–7994CrossRefGoogle Scholar
  5. 5.
    Langanke J, Wolf A, Hofmann J, Bohm K, Subhani MA, Muller TE, Leitner W, Gurtler C (2014) Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem 16(4):1865–1870CrossRefGoogle Scholar
  6. 6.
    Luinstra GA (2008) Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev 48(1):192–219CrossRefGoogle Scholar
  7. 7.
    Korashvili R, Noernberg B, Bornholdt N, Borchardt E, Luinstra GA (2013) Poly(propylene carbonate) from carbon dioxide: challenges for large-scale application. Chem Ing Tech 85(4):437–446CrossRefGoogle Scholar
  8. 8.
  9. 9.
    von der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem 16(6):3272–3280CrossRefGoogle Scholar
  10. 10.
    Darensbourg DJ, Chung W-C, Wang K, Zhou H-C (2014) Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catal 4(5):1511–1515CrossRefGoogle Scholar
  11. 11.
    Byrne CM, Allen SD, Lobkovsky EB, Coates GW (2004) Alternating copolymerization of limonene oxide and carbon dioxide. J Am Chem Soc 126(37):11404–11405CrossRefGoogle Scholar
  12. 12.
    Winkler M, Romain C, Meier MAR, Williams CK (2015) Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem 17(1):300–306CrossRefGoogle Scholar
  13. 13.
    Hu Y, Qiao L, Qin Y, Zhao X, Chen X, Wang X, Wang F (2009) Synthesis and stabilization of novel aliphatic polycarbonate from renewable resource. Macromolecules 42(23):9251–9254CrossRefGoogle Scholar
  14. 14.
    Jeon JY, Lee JJ, Varghese JK, Na SJ, Sujith S, Go MJ, Lee J, Ok M-A, Lee BY (2013) CO2/ethylene oxide copolymerization and ligand variation for a highly active salen-cobalt(III) complex tethering 4 quaternary ammonium salts. Dalton Trans 42(25):9245–9254CrossRefGoogle Scholar
  15. 15.
    Ren W-M, Liu Z-W, Wen Y-Q, Zhang R, Lu X-B (2009) Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J Am Chem Soc 131(32):11509–11518CrossRefGoogle Scholar
  16. 16.
    Varghese JK, Park DS, Jeon JY, Lee BY (2013) Double metal cyanide catalyst prepared using H3Co(CN)(6) for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization. J Polym Sci A Polym Chem 51(22):4811–4818CrossRefGoogle Scholar
  17. 17.
    Dong Y, Wang X, Zhao X, Wang F (2012) Facile synthesis of poly(ether carbonate)s via copolymerization of CO2 and propylene oxide under combinatorial catalyst of rare earth ternary complex and double metal cyanide complex. J Polym Sci A Polym Chem 50(2):362–370CrossRefGoogle Scholar
  18. 18.
    Zhang X-H, Wei R-J, Sun X-K, Zhang J-F, Du B-Y, Fan Z-Q, Qi G-R (2011) Selective copolymerization of carbon dioxide with propylene oxide catalyzed by a nanolamellar double metal cyanide complex catalyst at low polymerization temperatures. Polymer 52(24):5494–5502CrossRefGoogle Scholar
  19. 19.
    Sun XK, Zhang XH, Liu F, Chen S, Du BY, Wang Q, Fan ZQ, Qi GR (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co-III double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polym Sci A Polym Chem 46(9):3128–3139CrossRefGoogle Scholar
  20. 20.
    Robertson NJ, Qin ZQ, Dallinger GC, Lobkovsky EB, Lee S, Coates GW (2006) Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Trans 45:5390–5395CrossRefGoogle Scholar
  21. 21.
    Kim I, Yi MJ, Lee KJ, Park D-W, Kim BU, Ha C-S (2006) Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X = F, Cl, Br, I). Catal Today 111(3–4):292–296CrossRefGoogle Scholar
  22. 22.
    Chen S, Qi G-R, Hua Z-J, Yan H-Q (2004) Double metal cyanide complex based on Zn3[Co(CN)6]2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide. J Polym Chem A Polym Chem 42(20):5284–5291CrossRefGoogle Scholar
  23. 23.
    Darensbourg DJ, Adams MJ, Yarbrough JC, Phelps AL (2003) Synthesis and structural characterization of double metal cyanides of iron and zinc: catalyst precursors for the copolymerization of carbon dioxide and epoxides. Inorg Chem 42(24):7809–7818CrossRefGoogle Scholar
  24. 24.
    Darensbourg DJ, Adams MJ, Yarbrough JC (2001) Toward the design of double metal cyanides for the copolymerization of CO2 and epoxides. Inorg Chem 40(26):6543–6544CrossRefGoogle Scholar
  25. 25.
    Klaus S, Lehenmeier MW, Herdtweck E, Deglmann P, Ott AK, Rieger B (2011) Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization. J Am Chem Soc 133(33):13151–13161CrossRefGoogle Scholar
  26. 26.
    Ree M, Hwang Y, Kim JS, Kim H, Kim G (2006) New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal Today 115(1–4):134–145CrossRefGoogle Scholar
  27. 27.
    Hwang Y, Kim H, Ree M (2005) Zinc glutarate catalyzed synthesis and biodegradability of poly(carbonate-co-ester)s from CO2, propylene oxide, and epsilon-caprolactone. Macromol Symp 224:227–237CrossRefGoogle Scholar
  28. 28.
    Kim JS, Kim H, Ree M (2004) Hydrothermal synthesis of single-crystalline zinc glutarate and its structural determination. Chem Mater 16(16):2981–2983CrossRefGoogle Scholar
  29. 29.
    Kim JS, Ree M, Shin TJ, Han OH, Cho SJ, Hwang YT, Bae JY, Lee JM, Ryoo R, Kim H (2003) X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Catal 218(1):209–219CrossRefGoogle Scholar
  30. 30.
    Kim JS, Ree M, Lee SW, Oh W, Baek S, Lee B, Shin TJ, Kim KJ, Kim B, Lüning J (2003) NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. J Catal 218(2):386–395CrossRefGoogle Scholar
  31. 31.
    Hwang Y, Jung J, Ree M, Kim H (2003) Terpolymerization of CO2 with propylene oxide and ε-caprolactone using zinc glutarate catalyst. Macromolecules 36(22):8210–8212CrossRefGoogle Scholar
  32. 32.
    Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS (2002) Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polym Chem A Polym Chem 40(21):3579–3591CrossRefGoogle Scholar
  33. 33.
    Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization-New strategies and cooperative mechanisms. Coord Chem Rev 255(13–14):1460–1479CrossRefGoogle Scholar
  34. 34.
    Nozaki K (2004) Asymmetric catalytic synthesis of polyketones and polycarbonates. Pure Appl Chem 76(3):541–546CrossRefGoogle Scholar
  35. 35.
    Kuran W (1998) Coordination polymerization of heterocyclic and heterounsaturated monomers. Prog Polym Sci 23(6):919–992CrossRefGoogle Scholar
  36. 36.
    Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174CrossRefGoogle Scholar
  37. 37.
    Darensbourg DJ, Yeung AD (2013) Thermodynamics of the carbon dioxide-epoxide copolymerization and kinetics of the metal-free degradation: a computational study. Macromolecules 46(1):83–95CrossRefGoogle Scholar
  38. 38.
    Lu X-B, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484CrossRefGoogle Scholar
  39. 39.
    Darensbourg DJ, Wilson SJ (2012) What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem 14(10):2665–2671CrossRefGoogle Scholar
  40. 40.
    Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107(6):2388–2410CrossRefGoogle Scholar
  41. 41.
    Childers MI, Longo JM, Van Zee NJ, LaPointe AM, Coates GW (2014) Stereoselective epoxide polymerization and copolymerization. Chem Rev 114(16):8129–8152CrossRefGoogle Scholar
  42. 42.
    Darensbourg DJ, Yeung AD (2014) A concise review of computational studies of the carbon dioxide-epoxide copolymerization reactions. Polym Chem 5(13):3949–3962CrossRefGoogle Scholar
  43. 43.
    Kember MR, Buchard A, Williams CK (2011) Catalysts for CO2/epoxide copolymerisation. Chem Commun 47(1):141–163CrossRefGoogle Scholar
  44. 44.
    Buchard A, Bakewell CM, Weiner J, Williams CK (2012) Recent developments in catalytic activation of renewable resources for polymer synthesis. In: Meier MAR, Weckhuysen BM, Bruijnincx PCA (eds) Organometallics and renewables, vol 39, Topics in organometallic chemistry. Springer, Berlin, pp 175–224. doi: 10.1007/978-3-642-28288-1_5 CrossRefGoogle Scholar
  45. 45.
    Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639CrossRefGoogle Scholar
  46. 46.
    Darensbourg DJ (2014) Personal adventures in the synthesis of copolymers from carbon dioxide and cyclic ethers. In: Michele A, van Rudi E (eds) Advances in inorganic chemistry, vol 66. Academic, Burlington, pp 1–23. doi: 10.1016/B978-0-12-420221-4.00001-9 Google Scholar
  47. 47.
    Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci B Polym Lett 7:287–292CrossRefGoogle Scholar
  48. 48.
    Inoue S (1979) Copolymerization of carbon dioxide and epoxide: functionality of the copolymer. J Macromol Sci A 13(5):651–664CrossRefGoogle Scholar
  49. 49.
    Sugimoto H, Inoue S (2004) Copolymerization of carbon dioxide and epoxide. J Polym Chem A Polym Chem 42(22):5561–5573CrossRefGoogle Scholar
  50. 50.
    Nakano K, Kobayashi K, Nozaki K (2011) Tetravalent metal complexes as a new family of catalysts for copolymerization of epoxides with carbon dioxide. J Am Chem Soc 133(28):10720–10723CrossRefGoogle Scholar
  51. 51.
    Quadri CC, Le Roux E (2014) Copolymerization of cyclohexene oxide with CO2 catalyzed by tridentate N-heterocyclic carbene titanium(iv) complexes. Dalton Trans 43(11):4242–4246CrossRefGoogle Scholar
  52. 52.
    Robert C, Ohkawara T, Nozaki K (2014) Manganese-corrole complexes as versatile catalysts for the ring-opening homo- and Co-polymerization of epoxide. Chem Eur J 20(16):4789–4795CrossRefGoogle Scholar
  53. 53.
    Darensbourg DJ, Frantz EB (2007) Manganese(III) Schiff base complexes: chemistry relevant to the copolymerization of epoxides and carbon dioxide. Inorg Chem 46(15):5967–5978CrossRefGoogle Scholar
  54. 54.
    Kuroki M, Aida T, Inoue S (1988) (5,10,15,20-Tetraphenylporphyrinato)manganese acetate as a novel initiator for the ring-opening polymerization of 1,2-epoxypropane. Makromol Chem 189(6):1305–1313CrossRefGoogle Scholar
  55. 55.
    Nakano K, Kobayashi K, Ohkawara T, Imoto H, Nozaki K (2013) Copolymerization of epoxides with carbon dioxide catalyzed by iron–corrole complexes: synthesis of a crystalline copolymer. J Am Chem Soc 135(23):8456–8459CrossRefGoogle Scholar
  56. 56.
    Buchard A, Kember MR, Sandeman KG, Williams CK (2011) A bimetallic iron(iii) catalyst for CO2/epoxide coupling. Chem Commun 47(1):212–214CrossRefGoogle Scholar
  57. 57.
    Cui D, Nishiura M, Tardif O, Hou Z (2008) Rare-earth-metal mixed hydride/aryloxide complexes bearing mono(cyclopentadienyl) ligands. Synthesis, CO2 fixation, and catalysis on copolymerization of CO2 with cyclohexene oxide. Organometallics 27(11):2428–2435CrossRefGoogle Scholar
  58. 58.
    Cui D, Nishiura M, Hou Z (2005) Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by organo rare earth metal complexes. Macromolecules 38(10):4089–4095CrossRefGoogle Scholar
  59. 59.
    Aida T, Ishikawa M, Inoue S (1986) Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules 19(1):8–13CrossRefGoogle Scholar
  60. 60.
    Sârbu T, Beckman EJ (1999) Homopolymerization and copolymerization of cyclohexene oxide with carbon dioxide using zinc and aluminum catalysts. Macromolecules 32(21):6904–6912CrossRefGoogle Scholar
  61. 61.
    Sarbu T, Styranec T, Beckman EJ (2000) Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures. Nature 405(6783):165–168CrossRefGoogle Scholar
  62. 62.
    Sugimoto H, Ohtsuka H, Inoue S (2005) Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum Schiff base–ammonium salt system. J Polym Chem A Polym Chem 43(18):4172–4186CrossRefGoogle Scholar
  63. 63.
    Kember MR, Williams CK (2012) Efficient magnesium catalysts for the copolymerization of epoxides and CO2; using water to synthesize polycarbonate polyols. J Am Chem Soc 134(38):15676–15679CrossRefGoogle Scholar
  64. 64.
    Xiao Y, Wang Z, Ding K (2005) Intramolecularly dinuclear magnesium complex catalyzed copolymerization of cyclohexene oxide with CO2 under ambient CO2 pressure: kinetics and mechanism. Macromolecules 39(1):128–137CrossRefGoogle Scholar
  65. 65.
    Kember MR, Jutz F, Buchard A, White AJP, Williams CK (2012) Di-cobalt(ii) catalysts for the copolymerisation of CO2 and cyclohexene oxide: support for a dinuclear mechanism? Chem Sci 3(4):1245–1255CrossRefGoogle Scholar
  66. 66.
    Tsai C-Y, Huang B-H, Hsiao M-W, Lin C-C, Ko B-T (2014) Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide. Inorg Chem 53(10):5109–5116CrossRefGoogle Scholar
  67. 67.
    Li C-H, Chuang H-J, Li C-Y, Ko B-T, Lin C-H (2014) Bimetallic nickel and cobalt complexes as high-performance catalysts for copolymerization of carbon dioxide with cyclohexene oxide. Polym Chem 5(17):4875–4878CrossRefGoogle Scholar
  68. 68.
    Chisholm MH, Zhou Z (2004) Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate). J Am Chem Soc 126(35):11030–11039CrossRefGoogle Scholar
  69. 69.
    Chatterjee C, Chisholm MH (2011) The influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(III) complexes. 1. Aluminum chemistry. Inorg Chem 50(10):4481–4492CrossRefGoogle Scholar
  70. 70.
    Chatterjee C, Chisholm MH (2012) Influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(III) complexes. 2. Chromium chemistry. Inorg Chem 51(21):12041–12052CrossRefGoogle Scholar
  71. 71.
    Chatterjee C, Chisholm MH, El-Khaldy A, McIntosh RD, Miller JT, Wu T (2013) Influence of the metal (Al, Cr, and Co) and substituents of the porphyrin in controlling reactions involved in copolymerization of propylene oxide and carbon dioxide by porphyrin metal(III) complexes. 3. Cobalt chemistry. Inorg Chem 52(8):4547–4553CrossRefGoogle Scholar
  72. 72.
    Harrold ND, Li Y, Chisholm MH (2013) Studies of ring-opening reactions of styrene oxide by chromium tetraphenylporphyrin initiators. Mechanistic and stereochemical considerations. Macromolecules 46(3):692–698CrossRefGoogle Scholar
  73. 73.
    Mang S, Cooper AI, Colclough ME, Chauhan N, Holmes AB (1999) Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst. Macromolecules 33(2):303–308CrossRefGoogle Scholar
  74. 74.
    Sugimoto H, Ohshima H, Inoue S (2003) Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin: the first example of polycarbonate synthesis from 1-atm carbon dioxide. J Polym Chem A Polym Chem 41(22):3549–3555CrossRefGoogle Scholar
  75. 75.
    Darensbourg DJ, Mackiewicz RM, Phelps AL, Billodeaux DR (2004) Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc Chem Res 37(11):836–844CrossRefGoogle Scholar
  76. 76.
    Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW (2014) Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem Sci 5(10):4004–4011CrossRefGoogle Scholar
  77. 77.
    Moore DR, Cheng M, Lobkovsky EB, Coates GW (2003) Mechanism of the alternating copolymerization of epoxides and CO2 using β-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. J Am Chem Soc 125(39):11911–11924CrossRefGoogle Scholar
  78. 78.
    Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW (2001) Single-site β-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. J Am Chem Soc 123(36):8738–8749CrossRefGoogle Scholar
  79. 79.
    Lehenmeier MW, Kissling S, Altenbuchner PT, Bruckmeier C, Deglmann P, Brym A-K, Rieger B (2013) Flexibly tethered dinuclear zinc complexes: a solution to the entropy problem in CO2/epoxide copolymerization catalysis? Angew Chem Int Ed 52(37):9821–9826CrossRefGoogle Scholar
  80. 80.
    Rajendran NM, Haleel A, Reddy ND (2013) Copolymerization of CO2 and cyclohexene oxide: β-diketiminate-supported Zn(II)OMe and Zn(II)Et complexes as initiators. Organometallics 33(1):217–224CrossRefGoogle Scholar
  81. 81.
    Pilz MF, Limberg C, Lazarov BB, Hultzsch KC, Ziemer B (2007) Dinuclear zinc complexes based on parallel beta-diiminato binding sites: syntheses, structures, and properties as CO2/epoxide copolymerization catalysts. Organometallics 26(15):3668–3676CrossRefGoogle Scholar
  82. 82.
    Piesik DFJ, Range S, Harder S (2008) Bimetallic calcium and zinc complexes with bridged Î2-diketiminate ligands: investigations on epoxide/CO2 copolymerization. Organometallics 27(23):6178–6187CrossRefGoogle Scholar
  83. 83.
    Saini PK, Romain C, Williams CK (2014) Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO2-epoxide copolymerization. Chem Commun 50(32):4164–4167CrossRefGoogle Scholar
  84. 84.
    Buchard A, Jutz F, Kember MR, White AJP, Rzepa HS, Williams CK (2012) Experimental and computational investigation of the mechanism of carbon dioxide/cyclohexene oxide copolymerization using a dizinc catalyst. Macromolecules 45(17):6781–6795CrossRefGoogle Scholar
  85. 85.
    Jutz F, Buchard A, Kember MR, Fredriksen SB, Williams CK (2011) Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J Am Chem Soc 133(43):17395–17405CrossRefGoogle Scholar
  86. 86.
    Kember MR, White AJP, Williams CK (2010) Highly active Di- and trimetallic cobalt catalysts for the copolymerization of CHO and CO2 at atmospheric pressure. Macromolecules 43(5):2291–2298CrossRefGoogle Scholar
  87. 87.
    Kember MR, White AJP, Williams CK (2009) Di- and Tri-zinc catalysts for the Low-pressure copolymerization of CO2 and cyclohexene oxide. Inorg Chem 48(19):9535–9542CrossRefGoogle Scholar
  88. 88.
    Kember MR, Knight PD, Reung PTR, Williams CK (2009) Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew Chem Int Ed 48(5):931–933CrossRefGoogle Scholar
  89. 89.
    Inoue S (2000) Immortal polymerization: the outset, development, and application. J Polym Chem A Polym Chem 38(16):2861–2871CrossRefGoogle Scholar
  90. 90.
    Guerin W, Diallo AK, Kirilov E, Helou M, Slawinski M, Brusson J-M, Carpentier J-F, Guillaume SM (2014) Enantiopure isotactic PCHC synthesized by ring-opening polymerization of cyclohexene carbonate. Macromolecules 47(13):4230–4235CrossRefGoogle Scholar
  91. 91.
    Nakano K, Hashimoto S, Nakamura M, Kamada T, Nozaki K (2011) Stereocomplex of poly(propylene carbonate): synthesis of stereogradient poly(propylene carbonate) by regio- and enantioselective copolymerization of propylene oxide with carbon dioxide. Angew Chem Int Ed 50(21):4868–4871CrossRefGoogle Scholar
  92. 92.
    Cheng M, Darling NA, Lobkovsky EB, Coates GW (2000) Enantiomerically-enriched organic reagents via polymer synthesis: enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts. Chem Commun 20:2007–2008CrossRefGoogle Scholar
  93. 93.
    Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127(31):10869–10878CrossRefGoogle Scholar
  94. 94.
    Liu Y, Ren W-M, Liu J, Lu X-B (2013) Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. Angew Chem Int Ed 52(44):11594–11598CrossRefGoogle Scholar
  95. 95.
    Wu G-P, Zu Y-P, Xu P-X, Ren W-M, Lu X-B (2013) Microstructure analysis of a CO2 copolymer from styrene oxide at the diad level. Chem Asian J 8(8):1854–1862CrossRefGoogle Scholar
  96. 96.
    Wu G-P, Xu P-X, Lu X-B, Zu Y-P, Wei S-H, Ren W-M, Darensbourg DJ (2013) Crystalline CO2 copolymer from epichlorohydrin via Co(III)-complex-mediated stereospecific polymerization. Macromolecules 46(6):2128–2133CrossRefGoogle Scholar
  97. 97.
    Wu G-P, Ren W-M, Luo Y, Li B, Zhang W-Z, Lu X-B (2012) Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure SalenCo(III) complexes: synthesis of crystalline CO2-based polycarbonate. J Am Chem Soc 134(12):5682–5688CrossRefGoogle Scholar
  98. 98.
    Ren W-M, Wu G-P, Lin F, Jiang J-Y, Liu C, Luo Y, Lu X-B (2012) Role of the co-catalyst in the asymmetric coupling of racemic epoxides with CO2 using multichiral Co(III) complexes: product selectivity and enantioselectivity. Chem Sci 3(6):2094–2102CrossRefGoogle Scholar
  99. 99.
    Lu X-B, Ren W-M, Wu G-P (2012) CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc Chem Res 45(10):1721–1735CrossRefGoogle Scholar
  100. 100.
    Li B, Wu G-P, Ren W-M, Wang Y-M, Rao D-Y, Lu X-B (2008) Asymmetric, regio- and stereo-selective alternating copolymerization of CO2 and propylene oxide catalyzed by chiral chromium Salan complexes. J Polym Chem A Polym Chem 46(18):6102–6113CrossRefGoogle Scholar
  101. 101.
    Li B, Zhang R, Lu X-B (2007) Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 40(7):2303–2307CrossRefGoogle Scholar
  102. 102.
    Lu XB, Shi L, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B (2006) Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J Am Chem Soc 128(5):1664–1674CrossRefGoogle Scholar
  103. 103.
    Nakano K, Hiyama T, Nozaki K (2005) Asymmetric amplification in asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. Chem Commun 14:1871–1873CrossRefGoogle Scholar
  104. 104.
    Nozaki K, Nakano K, Hiyama T (1999) Optically active polycarbonates: asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide. J Am Chem Soc 121(47):11008–11009CrossRefGoogle Scholar
  105. 105.
    Kobayashi M, Tang Y-L, Tsuruta T, Inoue S (1973) Copolymerization of carbon dioxide and epoxide using dialkylzinc/dihydric phenol system as catalyst. Makromol Chem 169(1):69–81CrossRefGoogle Scholar
  106. 106.
    Inoue S, Koinuma H, Yokoo Y, Tsuruta T (1971) Stereochemistry of copolymerization of carbon dioxide with epoxycyclohexane. Makromol Chem 143(1):97–104CrossRefGoogle Scholar
  107. 107.
    Kobayashi M, Inoue S, Tsuruta T (1973) Copolymerization of carbon dioxide and epoxide by the dialkylzinc–carboxylic acid system. J Polym Chem A Polym Chem 11(9):2383–2385CrossRefGoogle Scholar
  108. 108.
    Hirano T, Inoue S, Tsuruta T (1975) Stereochemistry of the copolymerization of carbon dioxide with optically active phenylepoxyethane. Makromol Chem 176(7):1913–1917CrossRefGoogle Scholar
  109. 109.
    Hirano T, Inoue S, Tsuruta T (1976) Stereochemistry of copolymerization of optically active cyclohexylepoxyethane with carbon dioxide. Makromol Chem 177(11):3237–3243CrossRefGoogle Scholar
  110. 110.
    Hasebe Y, Tsuruta T (1987) Structural studies of poly(1,2-cyclohexene oxide) prepared with well-defined organozinc compounds. Makromol Chem 188(6):1403–1414CrossRefGoogle Scholar
  111. 111.
    Hasebe Y, Tsuruta T (1988) Mechanism of stereoselective polymerization of propylene oxide with [{MeOCH2CH(Me)OZnOCH(Me)CH2OMe}2 · {EtZnOCH(Me)CH2OMe}2] as initiator. Makromol Chem 189(8):1915–1926CrossRefGoogle Scholar
  112. 112.
    Yoshino N, Suzuki C, Kobayashi H, Tsuruta T (1988) Some features of a novel organozinc complex, [{MeOCH2CH(Me)OZnOCH(Me)CH2OMe}2 · {EtZnOCH(Me)CH2OMe}2], as an enantiomorphic catalyst for stereoselective polymerization of propylene oxide. Makromol Chem 189(8):1903–1913CrossRefGoogle Scholar
  113. 113.
    Ishimori M, Hagiwara T, Tsuruta T, Kai Y, Yasuoka N, Kasai N (1976) The structure and reactivity of [Zn(OMe)2. (EtZnOMe)6]. Bull Chem Soc Jpn 49(4):1165–1166CrossRefGoogle Scholar
  114. 114.
    Kuran W, Pasynkiewicz S, Skupińska J, Rokicki A (1976) Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts. Makromol Chem 177(1):11–20CrossRefGoogle Scholar
  115. 115.
    Eberhardt R, Allmendinger M, Zintl M, Troll C, Luinstra GA, Rieger B (2004) New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: activity enhancement through Zn(II)-ethylsulfinate initiating groups. Macromol Chem Phys 205(1):42–47CrossRefGoogle Scholar
  116. 116.
    Wang SJ, Du LC, Zhao XS, Meng YZ, Tjong SC (2002) Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide. J Appl Polym Sci 85(11):2327–2334CrossRefGoogle Scholar
  117. 117.
    Ree M, Bae JY, Jung JH, Shin TJ (1999) A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polym Chem A Polym Chem 37(12):1863–1876CrossRefGoogle Scholar
  118. 118.
    Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS (2005) Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol Symp 224(1):181–192CrossRefGoogle Scholar
  119. 119.
    Hinz W, Dexheimer EM, Bohres E, Grosch GH (2004) Process for the copolymerization of alkylene oxides and carbon dioxide using suspensions of multi-metal cyanide compoundsGoogle Scholar
  120. 120.
    Hinz W, Wildeson J, Dexheimer EM (2007) Reacting an H-functional initiator, an alkylene oxide, and CO2 in the presence of the modified multimetal cyanide compound to form the polyethercarbonate polyolGoogle Scholar
  121. 121.
    Hinz W, Wildeson J, Dexheimer EM, Neff R (2004) Formation of polymer polyols with a narrow polydispersity using double metal cyanide (DMC) catalystsGoogle Scholar
  122. 122.
    Kruper WJ, Swart DJ (1985) Carbon dioxide oxirane copolymers prepared using double metal cyanide complexesGoogle Scholar
  123. 123.
    Kuyper J, Lednor PW, Pogany GA (1989) Double metal cyanide catalystGoogle Scholar
  124. 124.
    Kuyper J, Lednor PW, Pogany GA (1989) Process for the preparation of polycarbonatesGoogle Scholar
  125. 125.
    Kuyper J, Lednor PW, Pogany GA (1989) Process for the preparation of polycarbonates from epoxy compound and carbon dioxideGoogle Scholar
  126. 126.
    Chen S, Hua Z, Fang Z, Qi G (2004) Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 45(19):6519–6524CrossRefGoogle Scholar
  127. 127.
    Sun X-K, Zhang X-H, Liu F, Chen S, Du B-Y, Wang Q, Fan Z-Q, Qi G-R (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-CoIII double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polym Chem A Polym Chem 46(9):3128–3139CrossRefGoogle Scholar
  128. 128.
    Zhou T, Zou Z, Gan J, Chen L, Zhang M (2011) Copolymerization of epoxides and carbon dioxide by using double metal cyanide complex (DMC) with high crystallinity. J Polym Res 18(6):2071–2076CrossRefGoogle Scholar
  129. 129.
    Darensbourg DJ, Wildeson JR, Yarbrough JC (2002) Solid-state structures of zinc(II) benzoate complexes. Catalyst precursors for the coupling of carbon dioxide and epoxides. Inorg Chem 41(4):973–980CrossRefGoogle Scholar
  130. 130.
    Darensbourg DJ, Wildeson JR, Yarbrough JC (2001) Synthesis and structures of (dialkylamino)ethylcyclopentadienyl derivatives of zinc. Organometallics 20(21):4413–4417CrossRefGoogle Scholar
  131. 131.
    Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH (2000) Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides. J Am Chem Soc 122(50):12487–12496CrossRefGoogle Scholar
  132. 132.
    Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH (1998) Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc 121(1):107–116CrossRefGoogle Scholar
  133. 133.
    Darensbourg DJ, Holtcamp MW (1995) Catalytic activity of zinc(II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 28(22):7577–7579CrossRefGoogle Scholar
  134. 134.
    Takeda N, Inoue S (1978) Polymerization of 1,2 epoxypropane and co-polymerization with carbon-dioxide catalysed by metalloporphyrins. Makromol Chem 179(5):1377–1381CrossRefGoogle Scholar
  135. 135.
    Hampel O, Rode C, Walther D, Beckert R, Görls H (2002) New derivatives of quinoxaline Ð syntheses, complex formation and their application as controlling ligands for zinc catalyzed epoxide-CO2ÐCopolymerization. Naturforsch B 57:946–956Google Scholar
  136. 136.
    Cheng M, Lobkovsky EB, Coates GW (1998) Catalytic reactions involving C1 feedstocks: new high-activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. J Am Chem Soc 120(42):11018–11019CrossRefGoogle Scholar
  137. 137.
    Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc 124(22):6335–6342CrossRefGoogle Scholar
  138. 138.
    Eberhardt R, Allmendinger M, Rieger B (2003) DMAP/Cr(III) catalyst ratio: the decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide. Macromol Rapid Commun 24(2):194–196CrossRefGoogle Scholar
  139. 139.
    Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42(44):5484–5487CrossRefGoogle Scholar
  140. 140.
    Lu X-B, Wang Y (2004) Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew Chem Int Ed 43(27):3574–3577CrossRefGoogle Scholar
  141. 141.
    Bok T, Yun H, Lee BY (2006) Bimetallic fluorine-substituted anilido-aldimine zinc complexes for CO2/(cyclohexene oxide) copolymerization. Inorg Chem 45(10):4228–4237CrossRefGoogle Scholar
  142. 142.
    Lee BY, Kwon HY, Lee SY, Na SJ, Han S-I, Yun H, Lee H, Park Y-W (2005) Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization. J Am Chem Soc 127(9):3031–3037CrossRefGoogle Scholar
  143. 143.
    Anderson CE, Vagin SI, Hammann M, Zimmermann L, Rieger B (2013) Copolymerisation of propylene oxide and carbon dioxide by dinuclear cobalt porphyrins. ChemCatChem 5(11):3269–3280CrossRefGoogle Scholar
  144. 144.
    Xiao YL, Wang Z, Ding KL (2005) Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts. Chem Eur J 11(12):3668–3678CrossRefGoogle Scholar
  145. 145.
    Williams CK, Breyfogle LE, Choi SK, Nam W, Young VG, Hillmyer MA, Tolman WB (2003) A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc 125(37):11350–11359CrossRefGoogle Scholar
  146. 146.
    Williams CK, Brooks NR, Hillmyer MA, Tolman WB (2002) Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Chem Commun 18:2132–2133CrossRefGoogle Scholar
  147. 147.
    Sugimoto H, Ogawa A (2007) Alternating copolymerization of carbon dioxide and epoxide by dinuclear zinc Schiff base complex. React Funct Polym 67(11):1277–1283CrossRefGoogle Scholar
  148. 148.
    Nakano K, Nozaki K, Hiyama T (2003) Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes. J Am Chem Soc 125(18):5501–5510CrossRefGoogle Scholar
  149. 149.
    Nishioka K, Goto H, Sugimoto H (2012) Dual catalyst system for asymmetric alternating copolymerization of carbon dioxide and cyclohexene oxide with chiral aluminum complexes: Lewis base as catalyst activator and Lewis acid as monomer activator. Macromolecules 45(20):8172–8192CrossRefGoogle Scholar
  150. 150.
    Bernard A, Chatterjee C, Chisholm MH (2013) The influence of the metal (Al, Cr and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and cyclic anhydrides by porphyrin metal(III) complexes. Polymer 54(11):2639–2646CrossRefGoogle Scholar
  151. 151.
    Konsler RG, Karl J, Jacobsen EN (1998) Cooperative asymmetric catalysis with dimeric salen complexes. J Am Chem Soc 120(41):10780–10781CrossRefGoogle Scholar
  152. 152.
    Ready JM, Jacobsen EN (2002) A practical oligomeric [(salen)Co] catalyst for asymmetric epoxide ring-opening reactions. Angew Chem Int Ed 41(8):1374–1377CrossRefGoogle Scholar
  153. 153.
    Hirahata W, Thomas RM, Lobkovsky EB, Coates GW (2008) Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides. J Am Chem Soc 130(52):17658–17659CrossRefGoogle Scholar
  154. 154.
    Widger PCB, Ahmed SM, Coates GW (2011) Exploration of cocatalyst effects on a bimetallic cobalt catalyst system: enhanced activity and enantioselectivity in epoxide polymerization. Macromolecules 44(14):5666–5670CrossRefGoogle Scholar
  155. 155.
    Nakano K, Hashimoto S, Nozaki K (2010) Bimetallic mechanism operating in the copolymerization of propylene oxide with carbon dioxide catalyzed by cobalt-salen complexes. Chem Sci 1:369–373CrossRefGoogle Scholar
  156. 156.
    Vagin SI, Reichardt R, Klaus S, Rieger B (2010) Conformationally flexible dimeric salphen complexes for bifunctional catalysis. J Am Chem Soc 132(41):14367–14369CrossRefGoogle Scholar
  157. 157.
    Lehenmeier MW, Bruckmeier C, Klaus S, Dengler JE, Deglmann P, Ott A-K, Rieger B (2011) Differences in reactivity of epoxides in the copolymerisation with carbon dioxide by zinc-based catalysts: propylene oxide versus cyclohexene oxide. Chem Eur J 17(32):8858–8869CrossRefGoogle Scholar
  158. 158.
    Thomas RM, Widger PCB, Ahmed SM, Jeske RC, Hirahata W, Lobkovsky EB, Coates GW (2010) Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J Am Chem Soc 132(46):16520–16525CrossRefGoogle Scholar
  159. 159.
    Klaus S, Vagin SI, Lehenmeier MW, Deglmann P, Brym AK, Rieger B (2011) Kinetic and mechanistic investigation of mononuclear and flexibly linked dinuclear complexes for copolymerization of CO2 and epoxides. Macromolecules 44(24):9508–9516CrossRefGoogle Scholar
  160. 160.
    Ohkawara T, Suzuki K, Nakano K, Mori S, Nozaki K (2014) Facile estimation of catalytic activity and selectivities in copolymerization of propylene oxide with carbon dioxide mediated by metal complexes with planar tetradentate ligand. J Am Chem Soc 136(30):10728–10735CrossRefGoogle Scholar
  161. 161.
    Nakano K, Kamada T, Nozaki K (2006) Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew Chem Int Ed 45(43):7274–7277CrossRefGoogle Scholar
  162. 162.
    Noh EK, Na SJ, Sujith S, Kim S-W, Lee BY (2007) Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization. J Am Chem Soc 129(26):8082–8083CrossRefGoogle Scholar
  163. 163.
    Sujith S, Min JK, Seong JE, Na SJ, Lee BY (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew Chem Int Ed 47(38):7306–7309CrossRefGoogle Scholar
  164. 164.
    Yoo J, Na SJ, Park HC, Cyriac A, Lee BY (2010) Anion variation on a cobalt(iii) complex of salen-type ligand tethered by four quaternary ammonium salts for CO2/epoxide copolymerization. Dalton Trans 39(10):2622–2630CrossRefGoogle Scholar
  165. 165.
    Na SJ, Sujith S, Cyriac A, Kim BE, Yoo J, Kang YK, Han SJ, Lee C, Lee BY (2009) Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization: a salen-cobaltate complex of an unusual binding mode. Inorg Chem 48(21):10455–10465CrossRefGoogle Scholar
  166. 166.
    Cyriac A, Jeon JY, Varghese JK, Park JH, Choi SY, Chung YK, Lee BY (2012) Unusual coordination mode of tetradentate Schiff base cobalt(iii) complexes. Dalton Trans 41(5):1444–1447CrossRefGoogle Scholar
  167. 167.
    Seong JE, Na SJ, Cyriac A, Kim B-W, Lee BY (2009) Terpolymerizations of CO2, propylene oxide, and various epoxides using a cobalt(III) complex of salen-type ligand tethered by four quaternary ammonium salts. Macromolecules 43(2):903–908CrossRefGoogle Scholar
  168. 168.
    Cyriac A, Lee SH, Lee BY (2011) Connection of polymer chains using diepoxide in CO2/propylene oxide copolymerizations. Polym Chem 2(4):950–956CrossRefGoogle Scholar
  169. 169.
    Cyriac A, Lee SH, Varghese JK, Park JH, Jeon JY, Kim SJ, Lee BY (2011) Preparation of flame-retarding poly(propylene carbonate). Green Chem 13(12):3469–3475CrossRefGoogle Scholar
  170. 170.
    Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY (2010) Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules 43(18):7398–7401CrossRefGoogle Scholar
  171. 171.
    Lee SH, Cyriac A, Jeon JY, Lee BY (2012) Preparation of thermoplastic polyurethanes using in situ generated poly(propylene carbonate)-diols. Polym Chem 3(5):1215–1220CrossRefGoogle Scholar
  172. 172.
    Ren W-M, Zhang X, Liu Y, Li J-F, Wang H, Lu X-B (2010) Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules 43(3):1396–1402CrossRefGoogle Scholar
  173. 173.
    Darensbourg DJ, Chung W-C, Wilson SJ (2013) Catalytic coupling of cyclopentene oxide and CO2 utilizing bifunctional (salen)Co(III) and (salen)Cr(III) catalysts: comparative processes involving binary (salen)Cr(III) analogs. ACS Catal 3(12):3050–3057CrossRefGoogle Scholar
  174. 174.
    Darensbourg DJ, Wilson SJ (2013) Synthesis of CO2-derived poly(indene carbonate) from indene oxide utilizing bifunctional cobalt(III) catalysts. Macromolecules 46(15):5929–5934CrossRefGoogle Scholar
  175. 175.
    Darensbourg DJ, Wei S-H, Yeung AD, Ellis WC (2013) An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules 46(15):5850–5855CrossRefGoogle Scholar
  176. 176.
    Ren W-M, Liu Y, Wu G-P, Liu J, Lu X-B (2011) Stereoregular polycarbonate synthesis: alternating copolymerization of CO2 with aliphatic terminal epoxides catalyzed by multichiral cobalt(III) complexes. J Polym Chem A Polym Chem 49(22):4894–4901CrossRefGoogle Scholar
  177. 177.
    Wu G-P, Wei S-H, Lu X-B, Ren W-M, Darensbourg DJ (2010) Highly selective synthesis of CO2 copolymer from styrene oxide. Macromolecules 43(21):9202–9204CrossRefGoogle Scholar
  178. 178.
    Wu G-P, Wei S-H, Ren W-M, Lu X-B, Xu T-Q, Darensbourg DJ (2011) Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J Am Chem Soc 133(38):15191–15199CrossRefGoogle Scholar
  179. 179.
    Li H, Niu Y (2011) Alternating copolymerization of CO2 with propylene oxide and terpolymerization with aliphatic epoxides by bifunctional cobalt Salen complex. Polym J 43(2):121–125CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Charles Romain
    • 1
  • Arnaud Thevenon
    • 1
  • Prabhjot K. Saini
    • 1
  • Charlotte K. Williams
    • 1
    Email author
  1. 1.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations