Skip to main content

1,2- Versus 1,4-Asymmetric Addition of Grignard Reagents to Carbonyl Compounds

  • Chapter
  • First Online:
Book cover Progress in Enantioselective Cu(I)-catalyzed Formation of Stereogenic Centers

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 58))

Abstract

The first copper(I)-catalysed conjugate addition of Grignard reagents to α,β-unsaturated carbonyl compounds was reported in 1941. Impressive developments have been made since then, with catalytic asymmetric additions representing the most remarkable achievement. The recent discovery that copper(I) is able to catalyse the asymmetric 1,2-addition of Grignard reagents to α,β-unsaturated, as well as aromatic ketones, was a true revelation. Recent progress in copper(I)-catalysed addition of Grignard reagents is reviewed throughout this chapter, comparing and contrasting the well-established 1,4-selectivity of Cu(I)-ligand complexes with the newly introduced 1,2-selectivity. Mechanistic insights towards the better understanding of the regiodivergence are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In one case, it was possible to carry out the reaction using 60 mol% of titanium tetraisopropoxide Ti(OiPr)4 [81], and in another case it was reported that Ti(OiPr)4-free 1,2-addition to aromatic ketones is possible when a threefold excess of organozinc reagent is used [82].

  2. 2.

    Nakamura et al. predicted an intermediate similar to that of 91, based on theoretical calculations carried out for the addition of organocuprates to acyl chlorides [104].

References

  1. Tomioka K (2004) conjugate addition of organometals to activated olefinics. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, supplement 2. Springer-Verlag, Berlin, Heidelberg, p 109

    Google Scholar 

  2. Tomioka K, Nagaoka Y (1999) Conjugate addition of organometallic reagents. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer-Verlag, Berlin, p 1105

    Chapter  Google Scholar 

  3. Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL (2008) Chem Rev 108:2824–2852

    Article  CAS  Google Scholar 

  4. Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M (2008) Chem Rev 108:2796–2823

    Article  CAS  Google Scholar 

  5. Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL (2009) Chem Soc Rev 38:1039–1075

    Article  CAS  Google Scholar 

  6. Komnenos T (1883) Justus Liebigs Ann Chem 218:145–167

    Article  Google Scholar 

  7. Kharasch MS, Tawney PO (1941) J Am Chem Soc 63:2308–2316

    Article  CAS  Google Scholar 

  8. López F, Minnaard AJ, Feringa BL (2007) Acc Chem Res 40:179–188

    Article  CAS  Google Scholar 

  9. Hawner C, Alexakis A (2010) Chem Commun 46:7295–7306

    Article  CAS  Google Scholar 

  10. Madduri AVR, Minnaard AJ, Harutyunyan SR (2012) Chem Commun 48:1478–1480

    Article  CAS  Google Scholar 

  11. Madduri AVR, Harutyunyan SR, Minnaard AJ (2012) Angew Chem Int Ed 51:3164–3167

    Article  CAS  Google Scholar 

  12. Tissot M, Li H, Alexakis A (2014) Copper-catalyzed asymmetric conjugate addition and allylic substitution of organometallic reagents to extended multiple-bond systems. In: Alexakis A, Krause N, Woodward S (eds) Copper catalyzed asymmetric synthesis. Wiley-VCH, Weinheim, pp 69–84

    Chapter  Google Scholar 

  13. Alexakis A, Krause N, Woodward S (2014) Copper-catalyzed asymmetric conjugate addition. In: Alexakis A, Krause N, Woodward S (eds) Copper catalyzed asymmetric synthesis. Wiley-VCH, Weinheim, pp 33–68

    Chapter  Google Scholar 

  14. Villacorta GM, Rao CP, Lippard SJ (1988) J Am Chem Soc 110:3175–3182

    Article  CAS  Google Scholar 

  15. Ahn KH, Klassen RB, Lippard SJ (1990) Organometallics 9:3178–3181

    Article  CAS  Google Scholar 

  16. Alexakis A, Frutos J, Mangeney P (1993) Tetrahedron Asymmetry 4:2427–2430

    Article  CAS  Google Scholar 

  17. de Vries AHM, Meetsma A, Feringa BL (1996) Angew Chem Int Ed Engl 35:2374–2376

    Article  Google Scholar 

  18. Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AHM (1997) Angew Chem Int Ed Engl 36:2620–2623

    Article  CAS  Google Scholar 

  19. Lambert F, Knotter DM, Janssen MD, van Klaveren M, Boersma J, van Koten G (1991) Tetrahedron Asymmetry 2:1097–1100

    Article  CAS  Google Scholar 

  20. Knotter DM, Grove DM, Smeets WJJ, Spek AL, Van Koten G (1992) J Am Chem Soc 114:3400–3410

    Article  CAS  Google Scholar 

  21. Zhou Q-L, Pfaltz A (1993) Tetrahedron Lett 34:7725–7728

    Article  CAS  Google Scholar 

  22. Spescha M, Rihs G (1993) Helv Chim Acta 76:1219–1230

    Article  CAS  Google Scholar 

  23. Kanai M, Tomioka K (1995) Tetrahedron Lett 36:4275–4278

    Article  CAS  Google Scholar 

  24. Stangeland EL, Sammakia T (1997) Tetrahedron 53:16503–16510

    Article  CAS  Google Scholar 

  25. Seebach D, Jaeschke G, Pichota A, Audergon L (1997) Helv Chim Acta 80:2515–2519

    Article  CAS  Google Scholar 

  26. Braga AL, Silva SJN, Lüdtke DS, Drekener RL, Silveira CC, Rocha JBT, Wessjohann LA (2002) Tetrahedron Lett 43:7329–7331

    Article  CAS  Google Scholar 

  27. Feringa BL, Badorrey R, Peña D, Harutyunyan SR, Minnaard AJ (2004) Proc Natl Acad Sci USA 101:5834–5838

    Article  CAS  Google Scholar 

  28. López F, Harutyunyan SR, Minnaard AJ, Feringa BL (2004) Copper-catalyzed enantioselective. J Am Chem Soc 126:12784–12785

    Article  CAS  Google Scholar 

  29. López F, Harutyunyan SR, Meetsma A, Minnaard AJ, Feringa BL (2005) Angew Chem Int Ed 44:2752–2756

    Article  CAS  Google Scholar 

  30. Wang S-Y, Loh T-P (2009) Chem Commun 46:8694–8703

    Article  CAS  Google Scholar 

  31. Des Mazery R, Pullez M, López F, Harutyunyan SR, Minnaard AJ, Feringa BL (2005) J Am Chem Soc 127:9966–9967

    Article  CAS  Google Scholar 

  32. Barroso S, Castelli R, Baggelaar MP, Geerdink D, ter Horst B, Casas-Arce E, Overkleeft HS, van der Marel GA, Codée JDC, Minnaard AJ (2012) Angew Chem Int Ed 51:11774–11777

    Google Scholar 

  33. Geerdink D, ter Horst B, Lepore M, Mori L, Puzo G, Hirsch AKH, Gilleron M, de Libero G, Minnaard AJ (2013) Chem Sci 4:709–716

    Article  CAS  Google Scholar 

  34. Barroso S, Geerdink D, ter Horst B, Casas-Arce E, Minnaard AJ (2013) Eur J Org Chem 4642–4654

    Google Scholar 

  35. Madduri AVR, Minnaard AJ (2010) Chem Eur J 16:11726–11731

    Article  CAS  Google Scholar 

  36. Matcha K, Madduri AVR, Roy S, Ziegler S, Waldmann H, Hirsch AKH, Minnaard AJ (2012) ChemBioChem 13:2537–2548

    Article  CAS  Google Scholar 

  37. Huang Y, Minnaard AJ, Feringa BL (2012) Org Biomol Chem 10:29–31

    Article  CAS  Google Scholar 

  38. Rudolph A, Bos PH, Meetsma A, Minnaard AJ, Feringa BL (2011) Angew Chem Int Ed 50:5834–5838

    Article  CAS  Google Scholar 

  39. den Hartog T, Rudolph A, Maciá B, Minnaard AJ, Feringa BL (2010) J Am Chem Soc 132:14349–14351

    Article  CAS  Google Scholar 

  40. Teichert JF, Feringa BL (2011) Chem Commun 47:2679–2681

    Article  CAS  Google Scholar 

  41. Schoonen AK, Fernández-Ibáñez MÁ, Fañanás-Mastral M, Teichert JF, Feringa BL (2013) Org Biomol Chem 12:36–41

    Article  Google Scholar 

  42. Vila C, Hornillos V, Fañanás-Mastral M, Feringa BL (2013) Chem Commun 49:5933–5935

    Article  CAS  Google Scholar 

  43. Mao B, Fañanás-Mastral M, Feringa BL (2013) Org Lett 15:286–289

    Article  CAS  Google Scholar 

  44. Matsumoto Y, Yamada K, Tomioka K (2008) J Org Chem 73:4578–4581

    Article  CAS  Google Scholar 

  45. Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A (2006) J Am Chem Soc 128:8416–8417

    Article  CAS  Google Scholar 

  46. Robert T, Velder J, Schmalz H-G (2008) Angew Chem Int Ed 47:7718–7721

    Article  CAS  Google Scholar 

  47. Naeemi Q, Robert T, Kranz DP, Velder J, Schmalz H-G (2011) Tetrahedron Asymmetry 22:887–892

    Article  CAS  Google Scholar 

  48. Palais L, Babel L, Quintard A, Belot S, Alexakis A (2010) Org Lett 12:1988–1991

    Article  CAS  Google Scholar 

  49. Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A (2010) Chem Eur J 16:9890–9904

    Article  CAS  Google Scholar 

  50. Krause N, Thorand S (1999) Inorganica Chim Acta 296:1–11

    Article  CAS  Google Scholar 

  51. Yoshikai N, Yamashita T, Nakamura E (2006) Chem Asian J 1:322–330

    Article  CAS  Google Scholar 

  52. den Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL (2008) Angew Chem Int Ed 47:398–401

    Google Scholar 

  53. Hénon H, Mauduit M, Alexakis A (2008) Angew Chem Int Ed 47:9122–9124

    Article  CAS  Google Scholar 

  54. Tissot M, Pérez Hernández A, Müller D, Mauduit M, Alexakis A (2011) Org Lett 13:1524–1527

    Article  CAS  Google Scholar 

  55. Tissot M, Poggiali D, Hénon H, Müller D, Guénée L, Mauduit M, Alexakis A (2012) Chem Eur J 18:8731–8747

    Article  CAS  Google Scholar 

  56. Madduri AVR, Harutyunyan SR, Minnaard AJ (2013) Drug Discov Today Technol 10:e21–e27

    Article  Google Scholar 

  57. Ameen D (2013) Snape TJ 4:893–907

    CAS  Google Scholar 

  58. Noyori R, Kitamura M (1991) Angew Chem Int Ed Engl 30:49–69

    Article  Google Scholar 

  59. Walsh PJ (2003) Acc Chem Res 36:739–749

    Article  CAS  Google Scholar 

  60. Pu L, Yu H-B (2001) Chem Rev 101:757–824

    Article  CAS  Google Scholar 

  61. Luderer MR, Bailey WF, Luderer MR, Fair JD, Dancer RJ, Sommer MB (2009) Tetrahedron Asymmetry 20:981–998

    Article  CAS  Google Scholar 

  62. Hatano M, Ishihara K (2008) Synthesis 2008:1647–1675

    Article  CAS  Google Scholar 

  63. Shibasaki M, Kanai M (2008) Chem Rev 108:2853–2873

    Article  CAS  Google Scholar 

  64. de Vries JG, Elsevier CJ (eds) (2007) Handbook of homogeneous hydrogenation. Wiley-VCH, Weinheim

    Google Scholar 

  65. Riant O, Hannedouche J (2007) Org Biomol Chem 5:873–888

    Article  CAS  Google Scholar 

  66. Hatano M, Suzuki S, Ishihara K (2006) J Am Chem Soc 128:9998–9999

    Article  CAS  Google Scholar 

  67. Hatano M, Suzuki S, Ishihara K (2010) Synlett 2010:321–324

    Article  CAS  Google Scholar 

  68. Hatano M, Matsumura T, Ishihara K (2005) Org Lett 7:573–576

    Article  CAS  Google Scholar 

  69. Giacomelli G, Lardicci L, Santi R (1974) J Org Chem 39:2736–2740

    Article  CAS  Google Scholar 

  70. Weber B, Seebach D (1992) Angew Chem Int Ed Engl 31:84–86

    Article  Google Scholar 

  71. Dosa PI, Fu GC (1998) J Am Chem Soc 120:445–446

    Article  CAS  Google Scholar 

  72. Ramón DJ, Yus M (1998) Tetrahedron Lett 39:1239–1242

    Article  Google Scholar 

  73. Yus M, Ramón DJ, Prieto O (2003) Tetrahedron Asymmetry 14:1103–1114

    Article  CAS  Google Scholar 

  74. Li Q, Gau H-M (2011) Chirality 23:929–939

    Article  CAS  Google Scholar 

  75. Zhou S, Chen C-R, Gau H-M (2010) Org Lett 12:48–51

    Article  CAS  Google Scholar 

  76. Wu K-H, Zhou S, Chen C-A, Yang M-C, Chiang R-T, Chen C-R, Gau H-M (2011) Chem Commun 47:11668–11670

    Article  CAS  Google Scholar 

  77. Chen C-A, Wu K-H, Gau H-M (2007) Angew Chem 119:5469–5472

    Article  Google Scholar 

  78. Biradar DB, Gau H-M (2009) Org Lett 11:499–502

    Article  CAS  Google Scholar 

  79. Fernández-Mateos E, Maciá B, Yus M (2014) Eur J Org Chem 6519–6526

    Google Scholar 

  80. Muramatsu Y, Harada T (2008) Angew Chem Int Ed 47:1088–1090

    Article  CAS  Google Scholar 

  81. Li H, García C, Walsh PJ (2004) Proc Natl Acad Sci USA 101:5425–5427

    Article  CAS  Google Scholar 

  82. Hatano M, Miyamoto T, Ishihara K (2007) Org Lett 9:4535–4538

    Article  CAS  Google Scholar 

  83. Oisaki K, Zhao D, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:7164–7165

    Article  CAS  Google Scholar 

  84. Tomita D, Wada R, Kanai M, Shibasaki M (2005) J Am Chem Soc 127:4138–4139

    Article  CAS  Google Scholar 

  85. Tomita D, Kanai M, Shibasaki M (2006) Chem Asian J 1:161–166

    Article  CAS  Google Scholar 

  86. Moser R, Bošković ŽV, Crowe CS, Lipshutz BH (2010) J Am Chem Soc 132:7852–7853

    Article  CAS  Google Scholar 

  87. Voigtritter KR, Isley NA, Moser R, Aue DH, Lipshutz BH (2012) Tetrahedron 68:3410–3416

    Article  CAS  Google Scholar 

  88. Oost R, Rong J, Minnaard AJ, Harutyunyan SR (2014) Catal Sci Technol 4:1997–2005

    Article  CAS  Google Scholar 

  89. Wu Z, Harutyunyan SR, Minnaard AJ (2014) Chem Eur J 20:14250–14255

    Article  CAS  Google Scholar 

  90. Germain N, Guénée L, Mauduit M, Alexakis A (2014) Org Lett 16:118–121

    Article  CAS  Google Scholar 

  91. Calvo BC, Madduri AVR, Harutyunyan SR, Minnaard AJ (2014) Adv Synth Catal 356:2061–2069

    Article  CAS  Google Scholar 

  92. Madduri AVR, Minnaard AJ, Harutyunyan SR (2012) Org Biomol Chem 10:2878–2884

    Article  CAS  Google Scholar 

  93. Wu Z, Madduri AVR, Harutyunyan SR, Minnaard AJ (2014) Eur J Org Chem 575–582

    Google Scholar 

  94. Mortensen M, Husmann R, Veri E, Bolm C (2009) Chem Soc Rev 38:1002–1010

    Article  CAS  Google Scholar 

  95. Franz AK, Wilson SO (2013) J Med Chem 56:388–405

    Article  CAS  Google Scholar 

  96. Bains W, Tacke R (2003) Curr Opin Drug Discov Devel 6:526–543

    CAS  Google Scholar 

  97. Gately S, West R (2007) Drug Dev Res 68:156–163

    Article  CAS  Google Scholar 

  98. Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I (2013) Angew Chem Int Ed 52:13717–13721

    Article  CAS  Google Scholar 

  99. Rong J, Oost R, Desmarchelier A, Minnaard AJ, Harutyunyan SR (2015) Angew Chem Int Ed 54:3038–3042

    Article  CAS  Google Scholar 

  100. Nakamura E, Yamanaka M, Mori S (2000) J Am Chem Soc 122:1826–1827

    Article  CAS  Google Scholar 

  101. Ortiz P, del Hoyo AM, Harutyunyan SR (2014) Eur J Org Chem 72–76

    Google Scholar 

  102. Fernández-Ibáñez MÁ, Maciá B, Minnaard AJ, Feringa BL (2008) Chem Commun 2571–2573

    Google Scholar 

  103. Nakakita T, Miura M, Toriyama M, Motohashi S, Barybin MV (2014) Tetrahedron Lett 55:1090–1092

    Article  CAS  Google Scholar 

  104. Yoshikai N, Nakamura E (2012) Chem Rev 112:2339–2372

    Article  CAS  Google Scholar 

  105. Woodward S (2000) Chem Soc Rev 29:393–401

    Article  CAS  Google Scholar 

  106. Alexakis A, Benhaim C, Rosset S, Humam M (2002) J Am Chem Soc 124:5262–5263

    Article  CAS  Google Scholar 

  107. Arnold LA, Imbos R, Mandoli A, de Vries AHM, Naasz R, Feringa BL (2000) Tetrahedron 56:2865–2878

    Article  CAS  Google Scholar 

  108. Berlan J, Besace Y (1986) Tetrahedron 42:4767–4776

    Article  CAS  Google Scholar 

  109. Hallnemo G, Olsson T, Ullenius C (1985) J Organomet Chem 282:133–144

    Article  CAS  Google Scholar 

  110. Christenson B, Olsson T, Ullenius C (1989) Tetrahedron 45:523–534

    Article  CAS  Google Scholar 

  111. Bertz SH, Cope SK, Hardin RA, Murphy MD, Ogle CA, Smith DT, Thomas AA, Whaley TN (2012) Organometallics 31:7827–7838

    Article  CAS  Google Scholar 

  112. House HO (1976) Acc Chem Res 9:59–67

    Google Scholar 

  113. Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ (2007) J Am Chem Soc 129:7208–7209

    Article  CAS  Google Scholar 

  114. Snyder JP (1995) J Am Chem Soc 117:11025–11026

    Article  CAS  Google Scholar 

  115. Hu H, Snyder JP (2007) J Am Chem Soc 129:7210–7211

    Article  CAS  Google Scholar 

  116. Gärtner T, Henze W, Gschwind RM (2007) J Am Chem Soc 129:11362–11363

    Article  CAS  Google Scholar 

  117. Bartholomew ER, Bertz SH, Cope S, Murphy M, Ogle CA (2008) J Am Chem Soc 130:11244–11245

    Article  CAS  Google Scholar 

  118. Bertz SH, Murphy MD, Ogle CA, Thomas AA (2010) Chem Commun 46:1255–1256

    Article  CAS  Google Scholar 

  119. Bartholomew ER, Bertz SH, Cope SK, Murphy MD, Ogle CA, Thomas AA (2010) Chem Commun 46:1253–1254

    Article  CAS  Google Scholar 

  120. Ryu I, Nakahira H, Ikebe M, Sonoda N, Yamato S, Komatsu M (2000) J Am Chem Soc 122:1219–1220

    Article  CAS  Google Scholar 

  121. Lipshutz BH, Wilhelm RS, Floyd DM (1981) J Am Chem Soc 103:7672–7674

    Article  CAS  Google Scholar 

  122. Lipshutz BH, Sharma S, Ellsworth EL (1990) J Am Chem Soc 112:4032–4034

    Article  CAS  Google Scholar 

  123. Nilsson K, Ullenius C, Krause N (1996) J Am Chem Soc 118:4194–4195

    Article  CAS  Google Scholar 

  124. Kitamura M, Miki T, Nakano K, Noyori R (2000) Bull Chem Soc Jpn 73:999–1014

    Article  CAS  Google Scholar 

  125. Gallo E, Ragaini F, Bilello L, Cenini S, Gennari C, Piarulli U (2004) J Organomet Chem 689:2169–2176

    Article  CAS  Google Scholar 

  126. Pfretzschner T, Kleemann L, Janza B, Harms K, Schrader T (2004) Chem Eur J 10:6048–6057

    Article  CAS  Google Scholar 

  127. Harutyunyan SR, López F, Browne WR, Correa A, Peña D, Badorrey R, Meetsma A, Minnaard AJ, Feringa BL (2006) J Am Chem Soc 128:9103–9118

    Article  CAS  Google Scholar 

  128. Mori S, Nakamura E (1999) Chem Eur J 5:1534–1543

    Article  CAS  Google Scholar 

  129. Zhang H, Gschwind RM (2006) Angew Chem Int Ed 45:6391–6394

    Article  CAS  Google Scholar 

  130. Zhang H, Gschwind RM (2007) Chem Eur J 13:6691–6700

    Article  CAS  Google Scholar 

  131. Schober K, Zhang H, Gschwind RM (2008) J Am Chem Soc 130:12310–12317

    Article  CAS  Google Scholar 

  132. Gschwind RM (2008) Chem Rev 108:3029–3053

    Article  CAS  Google Scholar 

  133. von Rekowski F, Koch C, Gschwind RM (2014) J Am Chem Soc 136:11389–11395

    Article  CAS  Google Scholar 

  134. Bertz SH, Hardin RA, Murphy MD, Ogle CA (2013) Chem Commun 49:3010–3012

    Article  CAS  Google Scholar 

  135. Bertz SH, Hardin RA, Ogle CA (2013) J Am Chem Soc 135:9656–9658

    Article  CAS  Google Scholar 

  136. Bertz SH, Hardin RA, Heavey TJ, Ogle CA (2013) Angew Chem Int Ed 52:10250–10252

    Article  CAS  Google Scholar 

  137. den Hartog T, Huang Y, Fañanás-Mastral M, Meuwese A, Rudolph A, Pérez M, Minnaard AJ, Feringa BL (2015) ACS Catal 5:560–574

    Article  CAS  Google Scholar 

  138. Yamanaka M, Nakamura E (2001) Organometallics 20:5675–5681

    Article  CAS  Google Scholar 

  139. Yamamoto Y, Maruyama K (1978) J Am Chem Soc 100:3240–3241

    Article  CAS  Google Scholar 

  140. Yamamoto Y, Yamamoto S, Yatagai H, Ishihara Y, Maruyama K (1982) J Org Chem 47:119–126

    Article  CAS  Google Scholar 

  141. Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y (1989) J Am Chem Soc 111:4392–4398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syuzanna R. Harutyunyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz, P., Lanza, F., Harutyunyan, S.R. (2016). 1,2- Versus 1,4-Asymmetric Addition of Grignard Reagents to Carbonyl Compounds. In: Harutyunyan, S. (eds) Progress in Enantioselective Cu(I)-catalyzed Formation of Stereogenic Centers. Topics in Organometallic Chemistry, vol 58. Springer, Cham. https://doi.org/10.1007/3418_2015_164

Download citation

Publish with us

Policies and ethics