1,2- Versus 1,4-Asymmetric Addition of Grignard Reagents to Carbonyl Compounds

  • Pablo Ortiz
  • Francesco Lanza
  • Syuzanna R. Harutyunyan
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 58)


The first copper(I)-catalysed conjugate addition of Grignard reagents to α,β-unsaturated carbonyl compounds was reported in 1941. Impressive developments have been made since then, with catalytic asymmetric additions representing the most remarkable achievement. The recent discovery that copper(I) is able to catalyse the asymmetric 1,2-addition of Grignard reagents to α,β-unsaturated, as well as aromatic ketones, was a true revelation. Recent progress in copper(I)-catalysed addition of Grignard reagents is reviewed throughout this chapter, comparing and contrasting the well-established 1,4-selectivity of Cu(I)-ligand complexes with the newly introduced 1,2-selectivity. Mechanistic insights towards the better understanding of the regiodivergence are also discussed.


1,2-Addition 1,4-Addition Asymmetric catalysis Copper Grignard reagents 


  1. 1.
    Tomioka K (2004) conjugate addition of organometals to activated olefinics. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, supplement 2. Springer-Verlag, Berlin, Heidelberg, p 109Google Scholar
  2. 2.
    Tomioka K, Nagaoka Y (1999) Conjugate addition of organometallic reagents. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer-Verlag, Berlin, p 1105CrossRefGoogle Scholar
  3. 3.
    Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL (2008) Chem Rev 108:2824–2852CrossRefGoogle Scholar
  4. 4.
    Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M (2008) Chem Rev 108:2796–2823CrossRefGoogle Scholar
  5. 5.
    Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL (2009) Chem Soc Rev 38:1039–1075CrossRefGoogle Scholar
  6. 6.
    Komnenos T (1883) Justus Liebigs Ann Chem 218:145–167CrossRefGoogle Scholar
  7. 7.
    Kharasch MS, Tawney PO (1941) J Am Chem Soc 63:2308–2316CrossRefGoogle Scholar
  8. 8.
    López F, Minnaard AJ, Feringa BL (2007) Acc Chem Res 40:179–188CrossRefGoogle Scholar
  9. 9.
    Hawner C, Alexakis A (2010) Chem Commun 46:7295–7306CrossRefGoogle Scholar
  10. 10.
    Madduri AVR, Minnaard AJ, Harutyunyan SR (2012) Chem Commun 48:1478–1480CrossRefGoogle Scholar
  11. 11.
    Madduri AVR, Harutyunyan SR, Minnaard AJ (2012) Angew Chem Int Ed 51:3164–3167CrossRefGoogle Scholar
  12. 12.
    Tissot M, Li H, Alexakis A (2014) Copper-catalyzed asymmetric conjugate addition and allylic substitution of organometallic reagents to extended multiple-bond systems. In: Alexakis A, Krause N, Woodward S (eds) Copper catalyzed asymmetric synthesis. Wiley-VCH, Weinheim, pp 69–84CrossRefGoogle Scholar
  13. 13.
    Alexakis A, Krause N, Woodward S (2014) Copper-catalyzed asymmetric conjugate addition. In: Alexakis A, Krause N, Woodward S (eds) Copper catalyzed asymmetric synthesis. Wiley-VCH, Weinheim, pp 33–68CrossRefGoogle Scholar
  14. 14.
    Villacorta GM, Rao CP, Lippard SJ (1988) J Am Chem Soc 110:3175–3182CrossRefGoogle Scholar
  15. 15.
    Ahn KH, Klassen RB, Lippard SJ (1990) Organometallics 9:3178–3181CrossRefGoogle Scholar
  16. 16.
    Alexakis A, Frutos J, Mangeney P (1993) Tetrahedron Asymmetry 4:2427–2430CrossRefGoogle Scholar
  17. 17.
    de Vries AHM, Meetsma A, Feringa BL (1996) Angew Chem Int Ed Engl 35:2374–2376CrossRefGoogle Scholar
  18. 18.
    Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AHM (1997) Angew Chem Int Ed Engl 36:2620–2623CrossRefGoogle Scholar
  19. 19.
    Lambert F, Knotter DM, Janssen MD, van Klaveren M, Boersma J, van Koten G (1991) Tetrahedron Asymmetry 2:1097–1100CrossRefGoogle Scholar
  20. 20.
    Knotter DM, Grove DM, Smeets WJJ, Spek AL, Van Koten G (1992) J Am Chem Soc 114:3400–3410CrossRefGoogle Scholar
  21. 21.
    Zhou Q-L, Pfaltz A (1993) Tetrahedron Lett 34:7725–7728CrossRefGoogle Scholar
  22. 22.
    Spescha M, Rihs G (1993) Helv Chim Acta 76:1219–1230CrossRefGoogle Scholar
  23. 23.
    Kanai M, Tomioka K (1995) Tetrahedron Lett 36:4275–4278CrossRefGoogle Scholar
  24. 24.
    Stangeland EL, Sammakia T (1997) Tetrahedron 53:16503–16510CrossRefGoogle Scholar
  25. 25.
    Seebach D, Jaeschke G, Pichota A, Audergon L (1997) Helv Chim Acta 80:2515–2519CrossRefGoogle Scholar
  26. 26.
    Braga AL, Silva SJN, Lüdtke DS, Drekener RL, Silveira CC, Rocha JBT, Wessjohann LA (2002) Tetrahedron Lett 43:7329–7331CrossRefGoogle Scholar
  27. 27.
    Feringa BL, Badorrey R, Peña D, Harutyunyan SR, Minnaard AJ (2004) Proc Natl Acad Sci USA 101:5834–5838CrossRefGoogle Scholar
  28. 28.
    López F, Harutyunyan SR, Minnaard AJ, Feringa BL (2004) Copper-catalyzed enantioselective. J Am Chem Soc 126:12784–12785CrossRefGoogle Scholar
  29. 29.
    López F, Harutyunyan SR, Meetsma A, Minnaard AJ, Feringa BL (2005) Angew Chem Int Ed 44:2752–2756CrossRefGoogle Scholar
  30. 30.
    Wang S-Y, Loh T-P (2009) Chem Commun 46:8694–8703CrossRefGoogle Scholar
  31. 31.
    Des Mazery R, Pullez M, López F, Harutyunyan SR, Minnaard AJ, Feringa BL (2005) J Am Chem Soc 127:9966–9967CrossRefGoogle Scholar
  32. 32.
    Barroso S, Castelli R, Baggelaar MP, Geerdink D, ter Horst B, Casas-Arce E, Overkleeft HS, van der Marel GA, Codée JDC, Minnaard AJ (2012) Angew Chem Int Ed 51:11774–11777Google Scholar
  33. 33.
    Geerdink D, ter Horst B, Lepore M, Mori L, Puzo G, Hirsch AKH, Gilleron M, de Libero G, Minnaard AJ (2013) Chem Sci 4:709–716CrossRefGoogle Scholar
  34. 34.
    Barroso S, Geerdink D, ter Horst B, Casas-Arce E, Minnaard AJ (2013) Eur J Org Chem 4642–4654Google Scholar
  35. 35.
    Madduri AVR, Minnaard AJ (2010) Chem Eur J 16:11726–11731CrossRefGoogle Scholar
  36. 36.
    Matcha K, Madduri AVR, Roy S, Ziegler S, Waldmann H, Hirsch AKH, Minnaard AJ (2012) ChemBioChem 13:2537–2548CrossRefGoogle Scholar
  37. 37.
    Huang Y, Minnaard AJ, Feringa BL (2012) Org Biomol Chem 10:29–31CrossRefGoogle Scholar
  38. 38.
    Rudolph A, Bos PH, Meetsma A, Minnaard AJ, Feringa BL (2011) Angew Chem Int Ed 50:5834–5838CrossRefGoogle Scholar
  39. 39.
    den Hartog T, Rudolph A, Maciá B, Minnaard AJ, Feringa BL (2010) J Am Chem Soc 132:14349–14351CrossRefGoogle Scholar
  40. 40.
    Teichert JF, Feringa BL (2011) Chem Commun 47:2679–2681CrossRefGoogle Scholar
  41. 41.
    Schoonen AK, Fernández-Ibáñez MÁ, Fañanás-Mastral M, Teichert JF, Feringa BL (2013) Org Biomol Chem 12:36–41CrossRefGoogle Scholar
  42. 42.
    Vila C, Hornillos V, Fañanás-Mastral M, Feringa BL (2013) Chem Commun 49:5933–5935CrossRefGoogle Scholar
  43. 43.
    Mao B, Fañanás-Mastral M, Feringa BL (2013) Org Lett 15:286–289CrossRefGoogle Scholar
  44. 44.
    Matsumoto Y, Yamada K, Tomioka K (2008) J Org Chem 73:4578–4581CrossRefGoogle Scholar
  45. 45.
    Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A (2006) J Am Chem Soc 128:8416–8417CrossRefGoogle Scholar
  46. 46.
    Robert T, Velder J, Schmalz H-G (2008) Angew Chem Int Ed 47:7718–7721CrossRefGoogle Scholar
  47. 47.
    Naeemi Q, Robert T, Kranz DP, Velder J, Schmalz H-G (2011) Tetrahedron Asymmetry 22:887–892CrossRefGoogle Scholar
  48. 48.
    Palais L, Babel L, Quintard A, Belot S, Alexakis A (2010) Org Lett 12:1988–1991CrossRefGoogle Scholar
  49. 49.
    Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A (2010) Chem Eur J 16:9890–9904CrossRefGoogle Scholar
  50. 50.
    Krause N, Thorand S (1999) Inorganica Chim Acta 296:1–11CrossRefGoogle Scholar
  51. 51.
    Yoshikai N, Yamashita T, Nakamura E (2006) Chem Asian J 1:322–330CrossRefGoogle Scholar
  52. 52.
    den Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL (2008) Angew Chem Int Ed 47:398–401Google Scholar
  53. 53.
    Hénon H, Mauduit M, Alexakis A (2008) Angew Chem Int Ed 47:9122–9124CrossRefGoogle Scholar
  54. 54.
    Tissot M, Pérez Hernández A, Müller D, Mauduit M, Alexakis A (2011) Org Lett 13:1524–1527CrossRefGoogle Scholar
  55. 55.
    Tissot M, Poggiali D, Hénon H, Müller D, Guénée L, Mauduit M, Alexakis A (2012) Chem Eur J 18:8731–8747CrossRefGoogle Scholar
  56. 56.
    Madduri AVR, Harutyunyan SR, Minnaard AJ (2013) Drug Discov Today Technol 10:e21–e27CrossRefGoogle Scholar
  57. 57.
    Ameen D (2013) Snape TJ 4:893–907Google Scholar
  58. 58.
    Noyori R, Kitamura M (1991) Angew Chem Int Ed Engl 30:49–69CrossRefGoogle Scholar
  59. 59.
    Walsh PJ (2003) Acc Chem Res 36:739–749CrossRefGoogle Scholar
  60. 60.
    Pu L, Yu H-B (2001) Chem Rev 101:757–824CrossRefGoogle Scholar
  61. 61.
    Luderer MR, Bailey WF, Luderer MR, Fair JD, Dancer RJ, Sommer MB (2009) Tetrahedron Asymmetry 20:981–998CrossRefGoogle Scholar
  62. 62.
    Hatano M, Ishihara K (2008) Synthesis 2008:1647–1675CrossRefGoogle Scholar
  63. 63.
    Shibasaki M, Kanai M (2008) Chem Rev 108:2853–2873CrossRefGoogle Scholar
  64. 64.
    de Vries JG, Elsevier CJ (eds) (2007) Handbook of homogeneous hydrogenation. Wiley-VCH, WeinheimGoogle Scholar
  65. 65.
    Riant O, Hannedouche J (2007) Org Biomol Chem 5:873–888CrossRefGoogle Scholar
  66. 66.
    Hatano M, Suzuki S, Ishihara K (2006) J Am Chem Soc 128:9998–9999CrossRefGoogle Scholar
  67. 67.
    Hatano M, Suzuki S, Ishihara K (2010) Synlett 2010:321–324CrossRefGoogle Scholar
  68. 68.
    Hatano M, Matsumura T, Ishihara K (2005) Org Lett 7:573–576CrossRefGoogle Scholar
  69. 69.
    Giacomelli G, Lardicci L, Santi R (1974) J Org Chem 39:2736–2740CrossRefGoogle Scholar
  70. 70.
    Weber B, Seebach D (1992) Angew Chem Int Ed Engl 31:84–86CrossRefGoogle Scholar
  71. 71.
    Dosa PI, Fu GC (1998) J Am Chem Soc 120:445–446CrossRefGoogle Scholar
  72. 72.
    Ramón DJ, Yus M (1998) Tetrahedron Lett 39:1239–1242CrossRefGoogle Scholar
  73. 73.
    Yus M, Ramón DJ, Prieto O (2003) Tetrahedron Asymmetry 14:1103–1114CrossRefGoogle Scholar
  74. 74.
    Li Q, Gau H-M (2011) Chirality 23:929–939CrossRefGoogle Scholar
  75. 75.
    Zhou S, Chen C-R, Gau H-M (2010) Org Lett 12:48–51CrossRefGoogle Scholar
  76. 76.
    Wu K-H, Zhou S, Chen C-A, Yang M-C, Chiang R-T, Chen C-R, Gau H-M (2011) Chem Commun 47:11668–11670CrossRefGoogle Scholar
  77. 77.
    Chen C-A, Wu K-H, Gau H-M (2007) Angew Chem 119:5469–5472CrossRefGoogle Scholar
  78. 78.
    Biradar DB, Gau H-M (2009) Org Lett 11:499–502CrossRefGoogle Scholar
  79. 79.
    Fernández-Mateos E, Maciá B, Yus M (2014) Eur J Org Chem 6519–6526Google Scholar
  80. 80.
    Muramatsu Y, Harada T (2008) Angew Chem Int Ed 47:1088–1090CrossRefGoogle Scholar
  81. 81.
    Li H, García C, Walsh PJ (2004) Proc Natl Acad Sci USA 101:5425–5427CrossRefGoogle Scholar
  82. 82.
    Hatano M, Miyamoto T, Ishihara K (2007) Org Lett 9:4535–4538CrossRefGoogle Scholar
  83. 83.
    Oisaki K, Zhao D, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:7164–7165CrossRefGoogle Scholar
  84. 84.
    Tomita D, Wada R, Kanai M, Shibasaki M (2005) J Am Chem Soc 127:4138–4139CrossRefGoogle Scholar
  85. 85.
    Tomita D, Kanai M, Shibasaki M (2006) Chem Asian J 1:161–166CrossRefGoogle Scholar
  86. 86.
    Moser R, Bošković ŽV, Crowe CS, Lipshutz BH (2010) J Am Chem Soc 132:7852–7853CrossRefGoogle Scholar
  87. 87.
    Voigtritter KR, Isley NA, Moser R, Aue DH, Lipshutz BH (2012) Tetrahedron 68:3410–3416CrossRefGoogle Scholar
  88. 88.
    Oost R, Rong J, Minnaard AJ, Harutyunyan SR (2014) Catal Sci Technol 4:1997–2005CrossRefGoogle Scholar
  89. 89.
    Wu Z, Harutyunyan SR, Minnaard AJ (2014) Chem Eur J 20:14250–14255CrossRefGoogle Scholar
  90. 90.
    Germain N, Guénée L, Mauduit M, Alexakis A (2014) Org Lett 16:118–121CrossRefGoogle Scholar
  91. 91.
    Calvo BC, Madduri AVR, Harutyunyan SR, Minnaard AJ (2014) Adv Synth Catal 356:2061–2069CrossRefGoogle Scholar
  92. 92.
    Madduri AVR, Minnaard AJ, Harutyunyan SR (2012) Org Biomol Chem 10:2878–2884CrossRefGoogle Scholar
  93. 93.
    Wu Z, Madduri AVR, Harutyunyan SR, Minnaard AJ (2014) Eur J Org Chem 575–582Google Scholar
  94. 94.
    Mortensen M, Husmann R, Veri E, Bolm C (2009) Chem Soc Rev 38:1002–1010CrossRefGoogle Scholar
  95. 95.
    Franz AK, Wilson SO (2013) J Med Chem 56:388–405CrossRefGoogle Scholar
  96. 96.
    Bains W, Tacke R (2003) Curr Opin Drug Discov Devel 6:526–543Google Scholar
  97. 97.
    Gately S, West R (2007) Drug Dev Res 68:156–163CrossRefGoogle Scholar
  98. 98.
    Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I (2013) Angew Chem Int Ed 52:13717–13721CrossRefGoogle Scholar
  99. 99.
    Rong J, Oost R, Desmarchelier A, Minnaard AJ, Harutyunyan SR (2015) Angew Chem Int Ed 54:3038–3042CrossRefGoogle Scholar
  100. 100.
    Nakamura E, Yamanaka M, Mori S (2000) J Am Chem Soc 122:1826–1827CrossRefGoogle Scholar
  101. 101.
    Ortiz P, del Hoyo AM, Harutyunyan SR (2014) Eur J Org Chem 72–76Google Scholar
  102. 102.
    Fernández-Ibáñez MÁ, Maciá B, Minnaard AJ, Feringa BL (2008) Chem Commun 2571–2573Google Scholar
  103. 103.
    Nakakita T, Miura M, Toriyama M, Motohashi S, Barybin MV (2014) Tetrahedron Lett 55:1090–1092CrossRefGoogle Scholar
  104. 104.
    Yoshikai N, Nakamura E (2012) Chem Rev 112:2339–2372CrossRefGoogle Scholar
  105. 105.
    Woodward S (2000) Chem Soc Rev 29:393–401CrossRefGoogle Scholar
  106. 106.
    Alexakis A, Benhaim C, Rosset S, Humam M (2002) J Am Chem Soc 124:5262–5263CrossRefGoogle Scholar
  107. 107.
    Arnold LA, Imbos R, Mandoli A, de Vries AHM, Naasz R, Feringa BL (2000) Tetrahedron 56:2865–2878CrossRefGoogle Scholar
  108. 108.
    Berlan J, Besace Y (1986) Tetrahedron 42:4767–4776CrossRefGoogle Scholar
  109. 109.
    Hallnemo G, Olsson T, Ullenius C (1985) J Organomet Chem 282:133–144CrossRefGoogle Scholar
  110. 110.
    Christenson B, Olsson T, Ullenius C (1989) Tetrahedron 45:523–534CrossRefGoogle Scholar
  111. 111.
    Bertz SH, Cope SK, Hardin RA, Murphy MD, Ogle CA, Smith DT, Thomas AA, Whaley TN (2012) Organometallics 31:7827–7838CrossRefGoogle Scholar
  112. 112.
    House HO (1976) Acc Chem Res 9:59–67Google Scholar
  113. 113.
    Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ (2007) J Am Chem Soc 129:7208–7209CrossRefGoogle Scholar
  114. 114.
    Snyder JP (1995) J Am Chem Soc 117:11025–11026CrossRefGoogle Scholar
  115. 115.
    Hu H, Snyder JP (2007) J Am Chem Soc 129:7210–7211CrossRefGoogle Scholar
  116. 116.
    Gärtner T, Henze W, Gschwind RM (2007) J Am Chem Soc 129:11362–11363CrossRefGoogle Scholar
  117. 117.
    Bartholomew ER, Bertz SH, Cope S, Murphy M, Ogle CA (2008) J Am Chem Soc 130:11244–11245CrossRefGoogle Scholar
  118. 118.
    Bertz SH, Murphy MD, Ogle CA, Thomas AA (2010) Chem Commun 46:1255–1256CrossRefGoogle Scholar
  119. 119.
    Bartholomew ER, Bertz SH, Cope SK, Murphy MD, Ogle CA, Thomas AA (2010) Chem Commun 46:1253–1254CrossRefGoogle Scholar
  120. 120.
    Ryu I, Nakahira H, Ikebe M, Sonoda N, Yamato S, Komatsu M (2000) J Am Chem Soc 122:1219–1220CrossRefGoogle Scholar
  121. 121.
    Lipshutz BH, Wilhelm RS, Floyd DM (1981) J Am Chem Soc 103:7672–7674CrossRefGoogle Scholar
  122. 122.
    Lipshutz BH, Sharma S, Ellsworth EL (1990) J Am Chem Soc 112:4032–4034CrossRefGoogle Scholar
  123. 123.
    Nilsson K, Ullenius C, Krause N (1996) J Am Chem Soc 118:4194–4195CrossRefGoogle Scholar
  124. 124.
    Kitamura M, Miki T, Nakano K, Noyori R (2000) Bull Chem Soc Jpn 73:999–1014CrossRefGoogle Scholar
  125. 125.
    Gallo E, Ragaini F, Bilello L, Cenini S, Gennari C, Piarulli U (2004) J Organomet Chem 689:2169–2176CrossRefGoogle Scholar
  126. 126.
    Pfretzschner T, Kleemann L, Janza B, Harms K, Schrader T (2004) Chem Eur J 10:6048–6057CrossRefGoogle Scholar
  127. 127.
    Harutyunyan SR, López F, Browne WR, Correa A, Peña D, Badorrey R, Meetsma A, Minnaard AJ, Feringa BL (2006) J Am Chem Soc 128:9103–9118CrossRefGoogle Scholar
  128. 128.
    Mori S, Nakamura E (1999) Chem Eur J 5:1534–1543CrossRefGoogle Scholar
  129. 129.
    Zhang H, Gschwind RM (2006) Angew Chem Int Ed 45:6391–6394CrossRefGoogle Scholar
  130. 130.
    Zhang H, Gschwind RM (2007) Chem Eur J 13:6691–6700CrossRefGoogle Scholar
  131. 131.
    Schober K, Zhang H, Gschwind RM (2008) J Am Chem Soc 130:12310–12317CrossRefGoogle Scholar
  132. 132.
    Gschwind RM (2008) Chem Rev 108:3029–3053CrossRefGoogle Scholar
  133. 133.
    von Rekowski F, Koch C, Gschwind RM (2014) J Am Chem Soc 136:11389–11395CrossRefGoogle Scholar
  134. 134.
    Bertz SH, Hardin RA, Murphy MD, Ogle CA (2013) Chem Commun 49:3010–3012CrossRefGoogle Scholar
  135. 135.
    Bertz SH, Hardin RA, Ogle CA (2013) J Am Chem Soc 135:9656–9658CrossRefGoogle Scholar
  136. 136.
    Bertz SH, Hardin RA, Heavey TJ, Ogle CA (2013) Angew Chem Int Ed 52:10250–10252CrossRefGoogle Scholar
  137. 137.
    den Hartog T, Huang Y, Fañanás-Mastral M, Meuwese A, Rudolph A, Pérez M, Minnaard AJ, Feringa BL (2015) ACS Catal 5:560–574CrossRefGoogle Scholar
  138. 138.
    Yamanaka M, Nakamura E (2001) Organometallics 20:5675–5681CrossRefGoogle Scholar
  139. 139.
    Yamamoto Y, Maruyama K (1978) J Am Chem Soc 100:3240–3241CrossRefGoogle Scholar
  140. 140.
    Yamamoto Y, Yamamoto S, Yatagai H, Ishihara Y, Maruyama K (1982) J Org Chem 47:119–126CrossRefGoogle Scholar
  141. 141.
    Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y (1989) J Am Chem Soc 111:4392–4398CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Ortiz
    • 1
  • Francesco Lanza
    • 1
  • Syuzanna R. Harutyunyan
    • 1
  1. 1.Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations