Skip to main content

Organometallic-Catalysed Gas–Liquid Reactions in Continuous Flow Reactors

  • Chapter
  • First Online:
Organometallic Flow Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 57))

Abstract

Continuous flow processing significantly enhances gas–liquid mixing. Given that reactive gases are highly valuable reagents for many chemical transformations, flow reactor technology has been extended to enable gas–liquid reactions to be facilitated. This chapter describes how hydrogenation, hydroformylation and trifluoromethylation reactions may be performed exploiting continuous flow technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hessel V, Renken A, Schouten JC, Yoshida Y (2009) Micro process engineering: a comprehensive handbook volume 2: devices, reactions and applications. Wiley, Germany

    Book  Google Scholar 

  2. Wiles C, Watts P (2011) Micro reaction technology in organic synthesis. CRC, London

    Google Scholar 

  3. Glasnov TN, Kappe CO (2011) The microwave to flow paradigm. Chem Eur J 17:11956–11968

    Article  CAS  Google Scholar 

  4. Baumann M, Baxendale IR, Ley SV (2011) The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol Divers 15:613–630

    Article  CAS  Google Scholar 

  5. Wiles C, Watts P (2012) Continuous flow reactors: a green chemistry perspective. Green Chem 14:38–54

    Article  CAS  Google Scholar 

  6. Jones RV, Godorhazy L, Varga N et al (2006) Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis. J Comb Chem 8:110–116

    Article  CAS  Google Scholar 

  7. Cossar PJ, Hizartzidis L, Simone MI (2015) The expanding utility of continuous flow hydrogenation. Org Biomol Chem 13:7119–7130

    Article  CAS  Google Scholar 

  8. Brzozowski M, O’Brien M, Ley SV et al (2015) Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor. Acc Chem Res 48:349–362

    Article  CAS  Google Scholar 

  9. Noël T, Hessel V (2013) Membrane microreactors: gas–liquid reactions made easy. Chem SusChem 6:405–407

    Google Scholar 

  10. Pieber B, Kappe CO (2015) Aerobic oxidations in continuous flow. Top Organomet Chem. doi:10.1007/3418_2015_133

    Google Scholar 

  11. Colombo E, Ratel P, Mounier L et al (2011) Reissert indole synthesis using continuous-flow hydrogenation. J Flow Chem 1:68–73

    Article  CAS  Google Scholar 

  12. Chen J, Przyuski K, Roemmele R et al (2014) Improved continuous flow processing: benzimidazole ring formation via catalytic hydrogenation of an aromatic nitro compound. Org Process Res Dev 18:1427–1433

    Article  CAS  Google Scholar 

  13. Bryan MC, Hein CD, Gao H et al (2013) Disubstituted 1-aryl-4-aminopiperidine library synthesis using computational drug design and high-throughput batch and flow technologies. ACS Comb Sci 15:503–511

    Article  CAS  Google Scholar 

  14. O’Brien M, Taylor N, Polyzos A et al (2011) Hydrogenation in flow: homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas-liquid contact at elevated pressure. Chem Sci 2:1250–1257

    Article  Google Scholar 

  15. Mercadante MA, Kelly CB, Lee C (2012) Continuous flow hydrogenation using an on-demand gas delivery reactor. Org Process Res Dev 16:1064–1068

    Article  CAS  Google Scholar 

  16. deBellefon C, Lamouille T, Pestre N et al (2005) Asymmetric catalytic hydrogenations at microliter scale in a helicoidal single channel falling film micro reactor. Catal Today 110:179–187

    Article  CAS  Google Scholar 

  17. Newton S, Ley SV, Ec A et al (2012) Asymmetric homogeneous hydrogenation in flow using a tube-in-tube reactor. Adv Synth Catal 354:1805–1812

    Article  CAS  Google Scholar 

  18. Duque R, Pogorzelec PJ, Cole-Hamilton DJ (2013) A single enantiomer (99 %) directly from continuous-flow asymmetric hydrogenation. Angew Chem Int Ed 52:9805–9807

    Article  CAS  Google Scholar 

  19. Balogh S, Farkas G, Madarasz J et al (2012) Asymmetric hydrogenation of CvC double bonds using Rh-complex under homogeneous, heterogeneous and continuous mode conditions. Green Chem 14:1146–1151

    Article  CAS  Google Scholar 

  20. Madarasz J, Farkas G, Balogh S et al (2012) A continuous flow system for the asymmetric hydrogenation using supported chiral catalysts. J Flow Chem 1:62–67

    Article  Google Scholar 

  21. Habraken ERM, Haspeslagh P, Vliegen M et al (2014) Iridium(I)-catalysed ortho-directed hydrogen isotope exchange in continuous flow reactors. J Flow Chem 5:2–5

    Article  Google Scholar 

  22. Webb PB, Sellin MF, Kunene TE et al (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588

    Article  CAS  Google Scholar 

  23. Wang X (2015) Recent advances in continuous rhodium-catalyzed hydroformylation. J Flow Chem 3:125–132

    Google Scholar 

  24. Van Leeuwen PNWM, Claver C (2000) Rhodium catalysed hydroformylation. Kluwer, Dordrecht

    Google Scholar 

  25. Hintermair U, Gong Z, Sernanovic A (2010) Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier. Dalton Trans 39:8501–8510

    Article  CAS  Google Scholar 

  26. Frisch AC, Webb PB, Guoying G et al (2007) “Solventless” continuous flow homogeneous hydroformylation of 1-octene. Dalton Trans 5531–5538

    Google Scholar 

  27. Kasinathan S, Bourne SL, Tolstoy P (2011) Syngas mediated C-C bond formation in flow: selective rhodium-catalysed hydroformylation of styrenes. Synlett 18:2648–2651

    Google Scholar 

  28. Chambers RD, Spink RCH (1999) Microreactors for elemental fluorine. J Chem Soc Chem Commun 883–884

    Google Scholar 

  29. Chambers RD, Holling D, Spink RCH et al (2001) Elemental fluorine part 13. Gas–liquid thin film microreactors for selective direct fluorination. Lab Chip 1:132–137

    Article  CAS  Google Scholar 

  30. Beatty JW, Douglas JJ, Cole KP et al (2015) A scalable and operationally simple radical trifluoromethylation. Nat commun 6:7919

    Article  Google Scholar 

  31. Straathof NJW, van Osch DJGP, Schouten A et al (2014) Visible light photocatalytic metal-free perfluoroalkylation of heteroarenes in continuous flow. J Flow Chem 4:12–17

    Article  CAS  Google Scholar 

  32. Straathof NJW, Gemoets HPL, Wang X et al (2014) Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow. Chem SusChem 7:1612–1617

    CAS  Google Scholar 

  33. Straathof NJW, Tegelbeckers HV (2014) A mild and fast photocatalytic trifluoromethylation of thiols in batch and continuous flow. Chem Sci 5:4768–4773

    Article  CAS  Google Scholar 

  34. Cantillo D, de Frutos O, Rincon JA (2014) Continuous flow a-trifluoromethylation of ketones by metal-free visible light photoredox catalysis. Org Lett 16:896–899

    Article  CAS  Google Scholar 

  35. Chen M, Buchwald SL (2013) Rapid and efficient trifluoromethylation of aromatic and heteroaromatic compounds using potassium trifluoroacetate enabled by a flow system. Angew Chem Int Ed 52:11628–11631

    Article  CAS  Google Scholar 

  36. Zhang X, Huang P, Li Y et al (2015) A mild and fast continuous flow trifluoromethylation of coumarins with the CF3 radical derived from CF3SO2Na and TBHP. Org Biomol Chem (in press)

    Google Scholar 

  37. Kelly CB, Lee C, Mercadante MA (2011) A continuous flow approach to palladium catalysed alkoxycarbonylation reactions. Org Process Res Dev 15:717–720

    Article  CAS  Google Scholar 

  38. Koos P, Gross U, Polyzos A (2011) Teflon AF-2400 mediated gas-liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration. Org Biomol Chem 9:6903–6908

    Article  CAS  Google Scholar 

  39. Miller PW, Long NJ, de Mello AJ et al (2007) Rapid multiphase carbonylation reactions by using a microtube reactor: applications in positron emission tomography 11C-radiolabeling. Angew Chem Int Ed 46:2875–2878

    Article  CAS  Google Scholar 

  40. Kealey S, Plisson C, Collier TL (2011) Microfluidic reactions using [11C]carbon monoxide solutions for the synthesis of a positron emission tomography radiotracer. Org Biomol Chem 9:3313–3319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The South African National Research Foundation and Nelson Mandela Metropolitan University are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watts, P. (2015). Organometallic-Catalysed Gas–Liquid Reactions in Continuous Flow Reactors. In: Noël, T. (eds) Organometallic Flow Chemistry. Topics in Organometallic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/3418_2015_159

Download citation

Publish with us

Policies and ethics