Skip to main content

The Catalytic Binuclear Elimination Reaction: Importance of Non-linear Kinetic Effects and Increased Synthetic Efficiency

  • Chapter
  • First Online:
Homo- and Heterobimetallic Complexes in Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 59))

Abstract

In the context of metal-mediated organic synthesis, cooperativity and synergism are rather broad terms which are often used to denote systems where unusual rate or selectivity effects are observed. These effects can be exhibited by monometallic, heterobimetallic and even multimetallic systems. The present contribution looks exclusively at one of the simplest cases, namely, systems possessing simultaneously both mononuclear and dinuclear complexes (hence both monometallic and heterobimetallic are included, but multimetallic systems are excluded). In Sect. 1, a brief introduction to the general area and a working definition for catalytic binuclear elimination reaction (CBER) is provided. In Sect. 2, we step back and classify the broad range of systems under consideration in order to enumerate the host of reaction networks considered, the potential for non-linear kinetic effects and how this relates to concepts of synthetic efficiency. In Sect. 3, we return to specific examples of CBER, how they fit into the overall context of the systems classification and how they can be identified in an unambiguous manner using in situ spectroscopic techniques. Indeed, tests can be constructed which permit the experimentalist to check crucial features and characteristics consistent with CBER. The present contribution focuses on the subarea in which CBER systems exist and hence CBER’s scope for organic syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rate r has taken a product-centric perspective throughout. However, there are many levels of interpretation, and they serve different purposes. Taking a metal-centric perspective, the rate relationships take the form (1) M r 1 = 1/2 M r 2 and (2) M r 3 = (1/2)M r 2 + M r 4.

  2. 2.

    Taking a metal-centric perspective, the rate relationships take the form (1) M r 1 = M r 2 and (2) M′ r 3 = M′ r 2 + M′ r 4.

References

  1. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Illanes A (ed) (2008) Enzyme biocatalysis: principles and applications hardcover. Springer, Heidelberg

    Google Scholar 

  3. Waser M (2012) Asymmetric organocatalysis in natural product syntheses. Springer, Heidelberg

    Book  Google Scholar 

  4. Erker G, Stephen DW (2013) Frustrated Lewis Pairs II: expanding the scope. Springer, Heidelberg

    Google Scholar 

  5. Parshall GW, Ittel SD (1992) Homogeneous catalysis: the applications and chemistry of catalysis by soluble transition metal complexes. Wiley-Intersceince, New York

    Google Scholar 

  6. Molnar A (2013) Palladium-catalyzed coupling reactions: practical aspects and future developments. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Jenner G (1988) Hydrocarbonylation of linear and branched aliphatic C2–C4 alcohols catalyzed by cobalt-ruthenium systems. A comparative study. J Organomet Chem 346(2):237–251

    Article  CAS  Google Scholar 

  8. Garland M (2002) Transport effects in homogeneous catalysis. In: Horvath IT (ed) Encyclopedia of catalysis. Wiley, New York

    Google Scholar 

  9. Breslow DS, Heck RF (1961) The reaction of cobalt hydrotetracarbonyl with olefins. J Am Chem Soc 83(19):4023–4027

    Article  Google Scholar 

  10. Norton JR (1979) Organometallic elimination mechanisms: studies on osmium alkyls and hydrides. Acc Chem Res 12:139–145

    Article  CAS  Google Scholar 

  11. Kovacs I, Hoff CD, Ungvary F, Marko L (1985) Kinetic investigation of the mixed-metal bimolecular reductive eliminations in the reactions of EtOC(O)CH2M(CO)n or EtOC(O)M(CO)n (M = Co, n = 4; M = Mn, n = 5) with HCo(CO)4 or HMn(CO)5. Organometallics 4:1347–1350

    Article  CAS  Google Scholar 

  12. Kovacs I, Ungvary F, Marko L (1986) Kinetic investigation of the cleavage of n-butyryl- or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen. Organometallics 5(2):209–215

    Article  CAS  Google Scholar 

  13. Li CZ, Garland M (2013) Catalytic binuclear elimination. In: Cornils B, Herrmann WA, Wong CH, Zanthoff HW (eds) Catalysis from A to Z: a concise encyclopedia, 4th edn. Wiley, Weinheim, pp 434–435

    Google Scholar 

  14. Heaton B (ed) (2005) Mechanisms in homogeneous catalysis: a spectroscopic approach. Wiley, Germany

    Google Scholar 

  15. Niemantsverdriet JW (2007) Spectroscopy in catalysis. Weinheim, Wiley VCH

    Book  Google Scholar 

  16. Haynes A (2005) The use of high pressure infrared spectroscopy to study catalytic mechanisms. In: Heaton B (ed) Mechanisms in homogeneous catalysis: a spectroscopic approach. Wiley, Weinheim, pp 107–150

    Chapter  Google Scholar 

  17. Garland M (2005) Processing spectroscopic data. In: Heaton B (ed) Mechanisms in homogeneous catalysis: a spectroscopic approach. Wiley, Weinheim, pp 151–193

    Chapter  Google Scholar 

  18. Garland M, Li CZ, Guo LF (2012) Four criteria for evaluating pure component spectral estimates and the subsequent identification of intermediates in homogeneous catalysis. ACS Catal 2:2327–2334

    Article  CAS  Google Scholar 

  19. Gao F, Ng K, Li C, Krummel K, Allian A, Garland M (2006) A versatile and compact experimental apparatus for the on-line spectroscopic study of liquid-phase heterogeneous catalytic systems. J Catal 237:49–57

    Article  CAS  Google Scholar 

  20. Temkin ON, Zeiggarnik AV, Bonchev DG (1996) Graph chemical reaction networks: a graph-theoretical approach. CRC, Boca Raton

    Google Scholar 

  21. Ford LR, Fulkerson DR (2010) Flows in networks. Princeton University Press, Princeton

    Google Scholar 

  22. Penfield P, Spencer R, Duinker S (1970) Tellegen’s theorem and electrical networks. MIT, Boston

    Google Scholar 

  23. Fishtik I, Callaghan CA, Datta R (2004) Reaction route graphs. I. Theory and algorithm. J Phys Chem B 108(18):5671–5682

    Article  CAS  Google Scholar 

  24. Masters C (2013) Homogeneous transition-metal catalysis: a gentle art paperback. Springer, Heidelberg

    Google Scholar 

  25. King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60(10):1375–1378

    Article  CAS  Google Scholar 

  26. Chou KC (1989) Graphic rules in steady and non-steady state enzyme kinetics. J Biol Chem 264:12074–12079

    CAS  Google Scholar 

  27. van Leeuwen PWNM, Claver C (2002) Rhodium catalyzed hydroformylation. Springer, Heidelberg

    Book  Google Scholar 

  28. Taddei M, Mann A (eds) (2014) Hydroformylation for organic synthesis. Springer, Heidelberg

    Google Scholar 

  29. de Vries JG, Cornelis J (eds) (2007) Handbook of homogeneous hydrogenation. Elsevier, Amsterdam

    Google Scholar 

  30. Izumi A, Tai Y (1977) Stereo-differentiating reactions: the nature of asymmetric reactions. Academic, San Diego

    Book  Google Scholar 

  31. Horiuti J (1973) Theory of reaction rates as based on the stoichiometric number concept. Ann N Y Acad Sci 213:5

    Article  CAS  Google Scholar 

  32. Broussard ME, Juma B, Train SG, Peng WJ, Laneman SA, Stanley GG (1993) A bimetallic hydroformylation catalyst: high regioselectivity and reactivity through homobimetallic cooperativity. Science 260:1784–1788

    Article  CAS  Google Scholar 

  33. Hansen KB, Leighton JL, Jacobsen EN (1996) On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrIII complexes. J Am Chem Soc 118:10924–10925

    Article  CAS  Google Scholar 

  34. Schaus SE, Jacobsen EN (2000) Asymmetric ring opening of meso epoxides with TMSCN catalyzed by (pybox)lanthanide complexes. Org Lett 2:1001–1004

    Article  CAS  Google Scholar 

  35. Whyman R (1974) In situ infrared spectral studies on the cobalt carbonyl-catalysed hydroformylation of olefins. J Organomet Chem 66(1):C23–C25

    Article  CAS  Google Scholar 

  36. Whyman R (1974) The hydroformylation of olefins catalysed by cobalt carbonyls: a high pressure infrared spectral study. J Organomet Chem 81(1):97–106

    Article  CAS  Google Scholar 

  37. Alemdaroğlu NH, Penninger ML, Oltay E (1976) Study of the mechanism of hydroformylation at industrial reaction conditions. Monatsh Chem 107(4):1153–1165

    Article  Google Scholar 

  38. Mirbach MF (1984) On the mechanism of the Co2(CO)8 catalyzed hydroformylation of olefins in hydrocarbon solvents. A high pressure UV and IR study. J Organomet Chem 265(2):205–213

    Article  CAS  Google Scholar 

  39. Mond L, Hirzt H, Cowap MD (1910) Einige neue metallkarbonyle. Z Anorg Allg Chem 68:207–219

    Google Scholar 

  40. Mond L, Hirzt H, Cowap MD (1910) LIV.—some new metallic carbonyls. J Chem Soc Trans 97:798–810

    Google Scholar 

  41. Bor G, Noack K (1974) On the infrared spectrum of dicobalt octacarbonyl. Results of 13CO enrichment studies. J Organomet Chem 64:367–373

    Article  CAS  Google Scholar 

  42. Bor G, Dietler UK, Noack K (1976) High temperature infrared spectrum of dicobalt octacarbonyl: predominance of the third isomer. J Chem Soc Chem Commun 914–916

    Google Scholar 

  43. Hieber W, Mühlbauer F, Ehmann EA (1932) Derivate des Kobalt- und Nickelcarbonyls. Ber Dtsch Chem Ges 65(7):1090

    Article  Google Scholar 

  44. Roelen O (1938) Process for preparing valuable oxo products. Patent Germany, 849.548

    Google Scholar 

  45. Pino P, Ercoli R, Calderazzo F (1955) Sinntesi di aldeidid a temperature ambiente per reazione fra olefin dicobalto-ottacarrbonile e idrogeno. Chim Ind 37:782

    CAS  Google Scholar 

  46. Kirch L, Orchin M (1959) On the mechanism for the Oxo reaction. J Am Chem Soc 81:3597–3599

    Article  CAS  Google Scholar 

  47. Natta G, Ercoli R, Castelano S (1955) Cinetica dell’ossosintesi. Chim Ind 37:6

    CAS  Google Scholar 

  48. Falbe J (ed) (1980) New syntheses with carbon monoxide. Springer, Heidelberg

    Google Scholar 

  49. Liu G, Volken R, Garland M (1999) Unmodified rhodium-catalyzed hydroformylation of alkenes using tetrarhodium dodecacarbonyl. The infrared characterization of 15 acyl rhodium tetracarbonyl intermediates. Organometallics 18(17):3429–3436

    Article  CAS  Google Scholar 

  50. Feng J, Garland M (1999) Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis. Organometallics 18(3):417–427

    Article  CAS  Google Scholar 

  51. Feng J, Garland M (1999) The unmodified homogeneous rhodium-catalyzed hydroformylation of cyclohexene and the search for monometallic catalytic binuclear elimination. Organometallics 18(8):1542–1546

    Article  CAS  Google Scholar 

  52. Liu G, Li CZ, Guo LF, Garland M (2006) Experimental evidence for a significant homometallic catalytic binuclear elimination reaction: Linear-quadratic kinetics in the rhodium catalyzed hydroformylation of cyclooctene. J Catal 237(1):67–78

    Article  CAS  Google Scholar 

  53. Wei CH, Dahl LF (1966) Molecular structures of triiron dodecacarbonyl and tetracobalt dodecacarbonyl. J Am Chem Soc 88:1821–1822

    Article  CAS  Google Scholar 

  54. Corey ER, Dahl LF, Beck W (1963) Rh6(CO)16 and its identity with previously reported Rh4(CO)11. J Am Chem Soc 85:1202–1203

    Article  CAS  Google Scholar 

  55. Allian AD, Garland M (2005) Spectral resolution of fluxional organometallics. The observation and FTIR characterization of all-terminal Rh4(CO)12. Dalton Trans 1957–1965

    Google Scholar 

  56. Whyman R (1970) Dirhodium octacarbonyl. J Chem Soc D 1194–1195

    Google Scholar 

  57. Hanlan LA, Ozin GA (1974) Synthesis using transition metal diatomic molecules. Dirhodium octacarbonyl and diiridium octacarbonyl. J Am Chem Soc 96(20):6324–6329

    Article  CAS  Google Scholar 

  58. Vidal JL, Walker WE (1981) Rhodium carbonyl cluster chemistry under high pressure of carbon monoxide and hydrogen. 3. Synthesis, characterization, and reactivity of HRh(CO)4. Inorg Chem 20(1):249–254

    Article  CAS  Google Scholar 

  59. Li CZ, Widjaja E, Chew W, Garland M (2002) Rhodium tetracarbonyl hydride: the elusive metal carbonyl hydride. Angew Chem 114(20):3939–3943

    Article  Google Scholar 

  60. King RB, King AD Jr, Iqbal MZ (1979) Alkylrhodium tetracarbonyl derivatives as catalytic intermediates in homogeneous hydroformylation reactions. An infrared spectroscopic study. J Am Chem Soc 101(17):4893–4896

    Article  CAS  Google Scholar 

  61. Li CZ, Guo LF, Garland M (2004) Homogeneous hydroformylation of ethylene catalyzed by Rh4(CO)12. The application of BTEM to identify a new class of rhodium carbonyl spectra: RCORh(CO)3(π-C2H4). Organometallics 23(9):2201–2204

    Article  CAS  Google Scholar 

  62. Li CZ, Guo LF, Garland M (2004) Identification of rhodium − rhenium nonacarbonyl RhRe(CO)9. Spectroscopic and thermodynamic aspects. Organometallics 23(22):5275–5279

    Article  CAS  Google Scholar 

  63. Li CZ, Widjaja E, Garland M (2004) Rh4(CO)12-catalyzed hydroformylation of cyclopentene promoted with HMn(CO)5. Another example of Rh4(CO)12/HMn(CO)5 bimetallic catalytic binuclear elimination. Organometallics 23:4131–4138

    Article  CAS  Google Scholar 

  64. Garland M, Bor G (1989) Infrared spectroscopic studies on metal carbonyl compounds. 24. Observation of the infrared spectrum of an acylrhodium tetracarbonyl during the hydroformylation of olefins with rhodium-containing catalyst precursors. Inorg Chem 28(3):410–413

    Article  CAS  Google Scholar 

  65. Zhang J, Poliakoff M, George MW (2003) Rhodium-catalyzed hydroformylation of alkenes using in situ high-pressure IR and polymer matrix techniques. Organometallics 22(8):1612–1618

    Article  CAS  Google Scholar 

  66. Csontos S, Heil B, Marko L (1974) Hydroformylation of olefins with rhodium carbonyls as catalysts. IV. Mechanism of the reaction. Ann N Y Acad 239:47–54

    Article  CAS  Google Scholar 

  67. Wender I, Pino P (1968) Organic syntheses via metal carbonyls, vol 1. Wiley, New York

    Google Scholar 

  68. Wender I, Pino P (1977) Organic syntheses via metal carbonyls, vol 2. Wiley, New York

    Google Scholar 

  69. Pino P, Oldani F, Consiglio G (1983) On hydrogen activation in the hydroformylation of olefins with Rh4(CO)12 or Co2(CO)8 as catalyst precursors. J Organomet Chem 250:491–497

    Article  CAS  Google Scholar 

  70. Garland M, Horvath IT, Bor G, Pino P (1991) Thermodynamic parameters for the formation of cobalt-rhodium heptacarbonyl and cobalt-rhodium octacarbonyl. Organometallics 10(3):559–567

    Article  CAS  Google Scholar 

  71. Fyhr C, Garland M (1993) Phenomenological aspects of homogeneous catalysis. The case of equilibrium-controlled precursor conversion. Organometallics 12(5):1753–1764

    Article  CAS  Google Scholar 

  72. Ungvary F (1972) Kinetics and mechanism of the reaction between dicobalt octacarbonyl and hydrogen. J Organomet Chem 36:363

    Article  CAS  Google Scholar 

  73. Beletskaya IP, Magomedov GK, Voskoboinikov AZ (1990) Heterometallic catalysts. Cobalt carbonyl derivatives of lanthanides in catalysis of octene-1 hydroformylation. J Organomet Chem 385:289–295

    Article  CAS  Google Scholar 

  74. Li CZ, Widjaja E, Garland M (2003) The Rh4(CO)12-catalyzed hydroformylation of 3,3-dimethylbut-1-ene promoted with HMn(CO)5. Bimetallic catalytic binuclear elimination as an origin for synergism in homogeneous catalysis. J Am Chem Soc 125:5540–5548

    Article  CAS  Google Scholar 

  75. Li CZ, Chen L, Garland M (2007) Synchronicity of mononuclear and dinuclear events in homogeneous catalysis. Hydroformylation of cyclopentene using Rh4(CO)12 and HRe(CO)5 as precursors. J Am Chem Soc 129:13327–13334

    Article  CAS  Google Scholar 

  76. Li CZ, Chen L, Garland M (2008) Synthetic applications of synergism using catalytic binuclear elimination reactions. Further examples of rhodium-manganese and rhodium-rhenium-catalyzed hydroformylations. Adv Synth Catal 350:679–690

    Article  CAS  Google Scholar 

  77. Li CZ, Cheng S, Tjahjono M, Schreyer M, Garland M (2010) Concurrent synergism and inhibition in bimetallic catalysis: catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations. J Am Chem Soc 2010:4589–4599

    Article  Google Scholar 

  78. Li CZ, Chen L, Widjaja E, Garland M (2010) The catalytic binuclear elimination reaction: confirmation from in situ FTIR studies of homogeneous rhodium catalyzed hydroformylation. Catal Today 155:261–265

    Article  CAS  Google Scholar 

  79. Li CZ, Gao F, Cheng S, Tjahjono M, van Meurs M, Tay BY, Jacob C, Guo LF, Garland M (2011) From stoichiometric to catalytic binuclear elimination in Rh–W hydroformylations. Identification of two new heterobimetallic intermediates. Organometallics 30:4292–4296

    Article  CAS  Google Scholar 

  80. Trost B (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  81. Noyes RM, Furrow SD (1982) The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism for oscillations. J Am Chem Soc 104(1):45–48

    Article  CAS  Google Scholar 

  82. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–72

    Article  Google Scholar 

  83. Feinberg M (1995) The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Ration Mech Anal 132:311–370

    Article  Google Scholar 

  84. Wegscheider R (1901) Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatsh Chem 32(8):849–906

    Article  Google Scholar 

  85. Garland M (1993) Heterometallic clusters as catalyst precursors. Synergism arising from the facile generation of a reactive fragment. Organometallics 12(2):535–543

    Article  CAS  Google Scholar 

  86. Liu G, Hakimifard M, Garland M (2001) An in situ spectroscopic study of the ruthenium catalyzed carbonylation of piperidine starting with triruthenium dodecacarbonyl: the importance of path dependence in homogeneous catalysis. J Mol Catal A Chem 168:33–37

    Article  CAS  Google Scholar 

  87. Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor JM, Vickers PW, Watt RJ (2004) Mechanistic studies of the cativa process. J Am Chem Soc 2004(126):2847–2861

    Article  Google Scholar 

  88. James BR (1973) Homogeneous hydrogenation. Wiley, New York

    Google Scholar 

  89. Spindler F, Bor G, Dietler UK, Pino P (1981) The formation of a new mixed cobalt rhodium carbonyl from Co2(CO)8 and Rh4(CO)12: infrared spectroscopic characterization under carbon monoxide pressure. J Organomet Chem 213:303–312

    Article  CAS  Google Scholar 

  90. Horvath IT, Bor G, Garland M, Pino P (1986) Cobalt-rhodium heptacarbonyl: a coordinatively unsaturated dinuclear metal carbonyl. Organometallics 5(7):1441–1445

    Article  CAS  Google Scholar 

  91. Horvath IT, Bor G, Garland M, Pino P (1988) Low temperature activation of molecular hydrogen in CO/H2 mixtures in the presence of CoRh(CO)7. J Organomet Chem 358:C17–C22

    Article  CAS  Google Scholar 

  92. Garland M, Pino P (1990) Kinetics of molecular hydrogen activation by cobaltrhodium heptacarbonyl. Organometallics 9(6):1943–1949

    Article  CAS  Google Scholar 

  93. Klähn M, Garland M (2015) On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catal 5:2301–2316

    Article  Google Scholar 

Download references

Acknowledgement

The author would like to thank the Agency for Science Technology and Research for generous support of this research. The author would also like to thank Dr Marco Klähn for his recent and extensive computational work concerning CBER and allowing the inclusion of Fig.22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Garland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garland, M. (2015). The Catalytic Binuclear Elimination Reaction: Importance of Non-linear Kinetic Effects and Increased Synthetic Efficiency. In: Kalck, P. (eds) Homo- and Heterobimetallic Complexes in Catalysis. Topics in Organometallic Chemistry, vol 59. Springer, Cham. https://doi.org/10.1007/3418_2015_151

Download citation

Publish with us

Policies and ethics