Advertisement

New Chemistry with Anionic NNN Pincer Ligands

  • Rebecca L. Melen
  • Lutz H. Gade
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 54)

Abstract

The use of tridentate anionic pincer ligands in organometallic chemistry has gained considerable importance, particularly in the field of homogenous catalysis. This chapter focuses on the recent developments of anionic tridentate NNN pincer ligands from their synthesis to coordination chemistry and their applications in forming stable transition metal complexes for applications in catalytic transformations.

Keywords

Catalysis Coordination chemistry Enantioselective catalysis Pincer ligands 

Abbreviations

ATRP

Atom transfer radical polymerization

BOPA

Bis(oxazolinylphenyl)amine

BOX

Bis(oxazoline)

BOXMI

Bis(oxazolinylmethylidene)isoindoline

BPI

Bis(2-pyridylimino)isoindole

BQA

Bis(8-quinolinyl)amine

Cbzbox

Bis-oxazoline carbazole

DIPEA

Diisopropylethylamine

DMS

Dimethylsilane

iproxpH

Bis[2-(4,4-diisopropyl-4,5-dihydrooxazolyl)]pyrrole

NHK

Nozaki–Hiyama–Kishi

PDI

Polydispersity index

pyBOX

Pyridine bis(oxazoline)

PyrrMeBOX

2,5-Bis(2-oxazolinylmethyl)pyrrole

SIPr

1,3-Bis(2,6-di-i-propylphenyl)imidazolidin-2-ylidene

TBAF

Tetrabutylammonium fluoride

thq

Tetrahydroquinoline

Notes

Acknowledgments

R. L. M. would like to thank the Alexander von Humboldt Foundation for a Research Fellowship.

References

  1. 1.
    van Koten G (1989) Pure Appl Chem 61:1681Google Scholar
  2. 2.
    Peris E, Crabtree RH (2004) Coord Chem Rev 248:2239CrossRefGoogle Scholar
  3. 3.
    Morales-Morales D, Jensen CGM (2007) The chemistry of pincer compounds. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Chase PA, van Koten G (2010) The pincer ligand: its chemistry and applications (Catalytic Science), 1st edn. Imperial College Press, LondonGoogle Scholar
  5. 5.
    van Koten G, Milstein D (eds.) (2013) Top Organomet Chem 40Google Scholar
  6. 6.
    Rasappan R, Laventine D, Reiser O (2008) Coord Chem Rev 252:702CrossRefGoogle Scholar
  7. 7.
    Desimoni G, Faita G, Quadrelli P (2003) Chem Rev 103:3119CrossRefGoogle Scholar
  8. 8.
    Desimoni G, Faita G, Jørgensen KA (2006) Chem Rev 106:3561CrossRefGoogle Scholar
  9. 9.
    Evans DA, Miller SJ, Lectka T, von Matt P (1999) J Am Chem Soc 121:7559CrossRefGoogle Scholar
  10. 10.
    Thorhauge J, Roberson M, Hazell RG, Jørgensen KA (2002) Chem Eur J 8:1888CrossRefGoogle Scholar
  11. 11.
    Inoue M, Suzuki T, Nakada M (2003) J Am Chem Soc 125:1140CrossRefGoogle Scholar
  12. 12.
    Suzuki T, Kinoshita A, Kawada H, Nakada M (2003) Synlett 2003:570Google Scholar
  13. 13.
    Inoue M, Nakada M (2007) Heterocycles 72:133CrossRefGoogle Scholar
  14. 14.
    Durán-Galván M, Worlikar SA, Connell BT (2010) Tetrahedron 66:7707CrossRefGoogle Scholar
  15. 15.
    Britovsek GJP, Gibson VC, Hoarau OD, Spitzmesser SK, White AJP, Williams DJ (2003) Inorg Chem 42:3454CrossRefGoogle Scholar
  16. 16.
    Gibson VC, Spitzmesser SK, White AJP, Williams DJ (2003) Dalton Trans 2003:2718CrossRefGoogle Scholar
  17. 17.
    Barbe J-M, Habermeyer B, Khoury T, Gros CP, Richard P, Chen P, Kadish KM (2010) Three-metal coordination by novel bisporphyrin architectures. Inorg Chem 49:8929–8940CrossRefGoogle Scholar
  18. 18.
    Mudadu MS, Singh AN, Thummel RP (2008) J Org Chem 73:6513CrossRefGoogle Scholar
  19. 19.
    Johnson KRD, Hayes PG (2009) Organometallics 28:6352CrossRefGoogle Scholar
  20. 20.
    Wang L, Cui D, Hou Z, Li W, Li Y (2011) Organometallics 30:760CrossRefGoogle Scholar
  21. 21.
    Johnson KRD, Kamenz BL, Hayes PG (2014) Organometallics 33:3005CrossRefGoogle Scholar
  22. 22.
    Mazet C, Gade LH (2003) Chem Eur J 9:1759CrossRefGoogle Scholar
  23. 23.
    Konrad F, Lloret Fillol J, Wadepohl H, Gade LH (2009) Inorg Chem 48:8523CrossRefGoogle Scholar
  24. 24.
    Ghorai D, Kumar S, Mani G (2012) Dalton Trans 41:9503CrossRefGoogle Scholar
  25. 25.
    McManus HA, Guiry PJ (2002) J Org Chem 67:8566CrossRefGoogle Scholar
  26. 26.
    Lu S-F, Du D-M, Zhang S-W, Xu J (2004) Tetrahedron Asymmetry 15:3433CrossRefGoogle Scholar
  27. 27.
    Peters JC, Harkins SB, Brown SD, Day MW (2001) Inorg Chem 40:5083CrossRefGoogle Scholar
  28. 28.
    Csok Z, Vechorkin O, Harkins SB, Scopelliti R, Hu X (2008) J Am Chem Soc 130:8156CrossRefGoogle Scholar
  29. 29.
    Wanniarachchi S, Liddle BJ, Toussainta J, Lindeman SV, Bennett B, Gardinier JR (2010) Dalton Trans 39:3167CrossRefGoogle Scholar
  30. 30.
    Elvidge JA, Linstead RP (1952) J Chem Soc 5000Google Scholar
  31. 31.
    Elvidge JA, Linstead RP (1952) J Chem Soc 1952:5008CrossRefGoogle Scholar
  32. 32.
    Clark PF, Elvidge JA, Linstead PR (1953) J Chem Soc 1953:3593CrossRefGoogle Scholar
  33. 33.
    Sauer DC, Melen RL, Kruck M, Gade LH (2014) Eur J Inorg Chem 2014:4715CrossRefGoogle Scholar
  34. 34.
    Siegl WO (1974) Inorg Nucl Chem Lett 10:825CrossRefGoogle Scholar
  35. 35.
    Siegl WO (1977) J Org Chem 42:1872CrossRefGoogle Scholar
  36. 36.
    Meder MB, Gade LH (2004) Eur J Inorg Chem 2004:2716CrossRefGoogle Scholar
  37. 37.
    Langlotz BK, Wadepohl H, Gade LH (2008) Angew Chem Int Ed 47:4670CrossRefGoogle Scholar
  38. 38.
    Sauer DC, Wadepohl H, Gade LH (2012) Inorg Chem 51:12948CrossRefGoogle Scholar
  39. 39.
    Deng Q-H, Wadepohl H, Gade LH (2001) Chem Eur J 17:14922CrossRefGoogle Scholar
  40. 40.
    Robinson MA, Trotz SI, Hurley TJ (1967) Inorg Chem 6:392CrossRefGoogle Scholar
  41. 41.
    Beattie JK (1988) Adv Inorg Chem 132:1CrossRefGoogle Scholar
  42. 42.
    Letcher RJ, Zhang W, Bensimon C, Crutchley RJ (1993) Inorg Chim Acta 210:183CrossRefGoogle Scholar
  43. 43.
    Kruck M, Sauer DC, Enders M, Wadepohl H, Gade LH (2011) Dalton Trans 40:10406CrossRefGoogle Scholar
  44. 44.
    Kruck M, Wadepohl H, Enders M, Gade LH (2013) Chem Eur J 19:1599CrossRefGoogle Scholar
  45. 45.
    Sauer DC, Kruck M, Wadepohl H, Enders M, Gade LH (2013) Organometallics 32:885CrossRefGoogle Scholar
  46. 46.
    Deng Q-H, Wadepohl H, Gade LH (2012) J Am Chem Soc 134:2946CrossRefGoogle Scholar
  47. 47.
    Puzas JP, Nakon R, Pertersen JL (1986) Inorg Chem 25:3837CrossRefGoogle Scholar
  48. 48.
    Maiti D, Paul H, Chanda N, Chakraborty S, Mondal B, Puranik VG, Lahiri GK (2004) Polyhedron 23:831CrossRefGoogle Scholar
  49. 49.
    Fout AR, Basuli F, Fan H, Tomaszewski J, Huffman JC, Baik M-H, Mindiola DJ (2005) Angew Chem Int Ed 45:3291CrossRefGoogle Scholar
  50. 50.
    Harkins SB, Peters JC (2006) Inorg Chem 45:4316CrossRefGoogle Scholar
  51. 51.
    Betley TA, Qian BA, Peters JC (2008) Inorg Chem 47:11570CrossRefGoogle Scholar
  52. 52.
    Wen H-M, Wang J-Y, Li B, Zhang L-Y, Chen C-N, Chen Z-N (2013) Eur J Inorg Chem 2013:4789CrossRefGoogle Scholar
  53. 53.
    Camerano JA, Sämann C, Wadepohl H, Gade LH (2011) Organometallics 30:379CrossRefGoogle Scholar
  54. 54.
    Vechorkin O, Hu X (2009) Angew Chem Int Ed 48:2937CrossRefGoogle Scholar
  55. 55.
    Vechorkin O, Proust V, Hu X (2009) J Am Chem Soc 131:9756CrossRefGoogle Scholar
  56. 56.
    Vechorkin O, Barmaz D, Proust V, Hu X (2009) J Am Chem Soc 131:12078CrossRefGoogle Scholar
  57. 57.
    Vechorkin O, Proust V, Hu X (2010) Angew Chem Int Ed 49:3061CrossRefGoogle Scholar
  58. 58.
    Hu X (2011) Chem Sci 2:1867CrossRefGoogle Scholar
  59. 59.
    Vechorkin O, Godinat A, Scopelliti R, Hu X (2011) Angew Chem Int Ed 50:11777CrossRefGoogle Scholar
  60. 60.
    Vechorkin O, Csok Z, Scopelliti R, Hu XL (2009) Chem Eur J 15:3889CrossRefGoogle Scholar
  61. 61.
    Breitenfeld J, Vechorkin O, Corminboeuf C, Scopelliti R, Hu XL (2010) Organometallics 29:3686CrossRefGoogle Scholar
  62. 62.
    Breitenfeld J, Ruiz J, Wodrich MD, Hu X (2013) J Am Chem Soc 135:12004CrossRefGoogle Scholar
  63. 63.
    Breitenfeld J, Wodrich MD, Hu X (2014) Organometallics 33:5708CrossRefGoogle Scholar
  64. 64.
    Di Franco T, Boutin N, Hu X (2013) Synthesis 45:2949CrossRefGoogle Scholar
  65. 65.
    Fürstner A (1999) Chem Rev 99:991CrossRefGoogle Scholar
  66. 66.
    Wessjohann LA, Scheid G (1999) Synthesis 1999:1CrossRefGoogle Scholar
  67. 67.
    Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (1999) Chem Soc Rev 28:169CrossRefGoogle Scholar
  68. 68.
    Okude Y, Hirano S, Hiyama T, Nozaki H (1977) J Am Chem Soc 99:3179CrossRefGoogle Scholar
  69. 69.
    Okude Y, Hiyama T, Nozaki H (1977) Tetrahedron Lett 18:3829CrossRefGoogle Scholar
  70. 70.
    Fürstner A, Shi N (1996) J Am Chem Soc 118:12349CrossRefGoogle Scholar
  71. 71.
    McManus HA, Cozzi PG, Guiry PJ (2006) Adv Synth Catal 348:551CrossRefGoogle Scholar
  72. 72.
    Hargaden GC, McManus HA, Giorgio Cozzi P, Guiry PJ (2007) Org Biomol Chem 5:763CrossRefGoogle Scholar
  73. 73.
    Inoue M, Nakada M (2007) J Am Chem Soc 129:4164CrossRefGoogle Scholar
  74. 74.
    Inoue M, Nakada M (2004) Org Lett 6:2977CrossRefGoogle Scholar
  75. 75.
    Inoue M, Nakada M (2006) Angew Chem Int Ed 45:252CrossRefGoogle Scholar
  76. 76.
    Durán-Galván M, Connell BT (2010) Eur J Org Chem 2010:2445CrossRefGoogle Scholar
  77. 77.
    Coeffard V, Aylward M, Guiry PJ (2009) Angew Chem Int Ed 48:9152CrossRefGoogle Scholar
  78. 78.
    Olah GA, Khrisnamurti R, Prakash GKS (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 3. 1st edn. Pergamon, Oxford, p 293Google Scholar
  79. 79.
    Roberts RM, Khalaf AA (1984) Friedel–Crafts alkylation chemistry. A century of discovery. Marcel Dekker, New YorkGoogle Scholar
  80. 80.
    Herrera RP, Sgarzani V, Bernardi L, Ricci A (2005) Angew Chem Int Ed 44:6576CrossRefGoogle Scholar
  81. 81.
    Zhuang W, Hazell RG, Jørgensen KA (2005) Org Biomol Chem 3:2566CrossRefGoogle Scholar
  82. 82.
    Jia Y-X, Zhu S-F, Yang Y, Zhou Q-L (2006) J Org Chem 71:75CrossRefGoogle Scholar
  83. 83.
    Lu S-F, Du D-M, Xu, J (2006) Org Lett 8:2115Google Scholar
  84. 84.
    Liu H, Xu J, Du D-M (2007) Org Lett 9:4725CrossRefGoogle Scholar
  85. 85.
    Liu H, Lu S-F, Xu J, Du D-M (2008) Chem Asian J 3:1111CrossRefGoogle Scholar
  86. 86.
    Peng J, Du D-M (2012) Eur J Org Chem 2012:4042CrossRefGoogle Scholar
  87. 87.
    Jia Y, Yang W, Du D-M (2012) Org Biomol Chem 10:4739CrossRefGoogle Scholar
  88. 88.
    Li C, Liu F-L, Zou Y-Q Lu L-Q, Chen J-R, Xiao W-J (2013) Synthesis 45:601CrossRefGoogle Scholar
  89. 89.
    Kassube JK, Gade LH (2006) Top Organomet Chem 20:61Google Scholar
  90. 90.
    Liu H, Du D-M (2010) Eur J Org Chem 2010:2121CrossRefGoogle Scholar
  91. 91.
    Purser S, Moore PR, Swallow S, Gouverneur V (2008) Chem Soc Rev 37:320CrossRefGoogle Scholar
  92. 92.
    Tressaud A (ed) (2006) Fluorine and the environment – agrochemicals, archaeology, green chemistry & water. Adv Fluorine Sci 2Google Scholar
  93. 93.
    Leo A, Hansch C, Elkins D (1971) Chem Rev 71:525CrossRefGoogle Scholar
  94. 94.
    Yagupolskii LM, Ilchenko AY, Kondratenko NV (1974) Russ Chem Rev 43:32CrossRefGoogle Scholar
  95. 95.
    Filler R, Kobayashi Y (1982) Biomedical aspects of fluorine chemistry. Elsevier, AmsterdamGoogle Scholar
  96. 96.
    Gribkoff VK, Starrett JE, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW (2001) Nature Med 7:471CrossRefGoogle Scholar
  97. 97.
    Hewawasam P, Gribkoff VK, Pendri Y, Dworetzky SI, Meanwell NA, Martinez E, Boissard CG, Post-Munson DJ, Trojnacki JT, Yeleswaram K, Pajor LM, Knipe J, Gao Q, Perrone R, Starrett JE (2002) Bioorg Med Chem Lett 12:1023CrossRefGoogle Scholar
  98. 98.
    Deng Q-H, Wadepohl H, Gade LH (2012) J Am Chem Soc 134:10769CrossRefGoogle Scholar
  99. 99.
    Deng Q-H, Rettenmeier C, Wadepohl H, Gade LH (2014) Chem Eur J 20:93CrossRefGoogle Scholar
  100. 100.
    Deng Q-H, Bleith T, Wadepohl H, Gade LH (2013) J Am Chem Soc 135:5356CrossRefGoogle Scholar
  101. 101.
    Tan F, Xiao C, Cheng H-G, Wu W, Ding K-R, Xiao W-J (2012) Chem Asian J 7:493CrossRefGoogle Scholar
  102. 102.
    Inagaki T, Ito A, Ito J-I, Nishiyama H (2010) Angew Chem Int Ed 49:9384Google Scholar
  103. 103.
    Nishiyama H, Furuta A (2007) Chem Commun 2007:760CrossRefGoogle Scholar
  104. 104.
    Inagaki T, Phong LT, Furuta A, Ito J-i, Nishiyama H (2010) Chem Eur J 16:3090Google Scholar
  105. 105.
    Lu S-F, Du D-M, Xu J, Zhang S-W (2006) J Am Chem Soc 128:7418CrossRefGoogle Scholar
  106. 106.
    Rosini G (1991) In: Trost BM, Heathcock CH (eds) Comprehensive organic synthesis, vol. 2. Pergamon, Oxford, pp 321–340Google Scholar
  107. 107.
    Ono N (2001) The nitro group in organic synthesis. Wiley-VCH, New York, Chap 3, pp 30–69Google Scholar
  108. 108.
    Shibasaki M, Gröger H (1999) In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer-Verlag, Berlin, Heidelberg, Ch. 29.3Google Scholar
  109. 109.
    Shibasaki M, Sasai H, Arai T (1997) Angew Chem Int Ed 36:1236CrossRefGoogle Scholar
  110. 110.
    Luzzio FA (2001) Tetrahedron 57:915CrossRefGoogle Scholar
  111. 111.
    Westermann B (2003) Angew Chem Int Ed 42:151CrossRefGoogle Scholar
  112. 112.
    Du D-M, Lu S-F, Fang T, Xu J (2005) J Org Chem 70:3712CrossRefGoogle Scholar
  113. 113.
    Breitenfeld J, Scopelliti R, Hu X (2012) Organometallics 31:2128CrossRefGoogle Scholar
  114. 114.
    Rettenmeier C, Wadepohl H, Gade LH (2014) Chem Eur J 20:9657CrossRefGoogle Scholar
  115. 115.
    Druliner JD, Ittel SD, Krusic PJ, Tolman CA (1982) Process for producing a mixture containing cyclohexanol and cyclohexanone from cyclohexane. US Patent 4 326 084Google Scholar
  116. 116.
    Tolman CA, Druliner JD, Krusic PJ, Nappa MJ, Seidel WC, Williams ID, Ittel SD (1988) J Mol Catal 48:129CrossRefGoogle Scholar
  117. 117.
    Saussine L, Brazi E, Robine A, Mimoun H, Fischer J, Weiss R (1985) J Am Chem Soc 107:3534CrossRefGoogle Scholar
  118. 118.
    Meder MB, Siggelkow BA, Gade LH (2004) Z Anorg Allg Chem 630:1962CrossRefGoogle Scholar
  119. 119.
    Kaizer J, Pap J, Speier G, Párkányi L (2004) Z Kristallogr NCS 219:141Google Scholar
  120. 120.
    Csay T, Kripli B, Giorgi M, Kaizer J, Speier G (2010) Inorg Chem Commun 254:781Google Scholar
  121. 121.
    Kaizer J, Pap J, Speier G, Réglier M, Giorgi M (2004) Trans Met Chem 29:630CrossRefGoogle Scholar
  122. 122.
    Balogh-Hergovich É, Kaizer J, Speier G, Huttner G, Jacobi A (2000) Inorg Chem 39:4224CrossRefGoogle Scholar
  123. 123.
    Váradi T, Pap JS, Giorgi M, Párkányi L, Csay T, Speier G, Kaizer J (2013) Inorg Chem 52:1559CrossRefGoogle Scholar
  124. 124.
    Niwa T, Nakada M (2012) J Am Chem Soc 134:13538CrossRefGoogle Scholar
  125. 125.
    Siggelkow B, Meder MB, Galka CH, Gade LH (2004) Eur J Inorg Chem 2004:3424CrossRefGoogle Scholar
  126. 126.
    Meder MB, Haller I, Gade LH (2005) Dalton Trans 2005:1403CrossRefGoogle Scholar
  127. 127.
    Siggelkow BA, Gade LH (2005) Z Anorg Allg Chem 631:2575CrossRefGoogle Scholar
  128. 128.
    Nixon TD, Ward BD (2012) Chem Commun 48:11790CrossRefGoogle Scholar
  129. 129.
    Bennett SD, Pope SJA, Ward BD (2013) Chem Commun 49:6072CrossRefGoogle Scholar
  130. 130.
    Bennett SD, Core BA, Blake MP, Pope SJA, Mountford P, Ward BD (2014) Dalton Trans 43:5871CrossRefGoogle Scholar
  131. 131.
    Sanchez-Blanco AI, Gothelf KV, Jørgensen KA (1997) Tetrahedron Lett 38:7923CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Anorganisch-Chemisches-InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations