Skip to main content

Ruthenium-Catalyzed Amide-Bond Formation

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 48))

Abstract

The amide functionality is one of the most important functional groups in organic and biological chemistry. Classical synthetic strategies of amides involve the stoichiometric, and poor atom efficient, reaction of amines with carboxylic acid derivatives. Transition-metal-catalyzed reactions have emerged in recent years as more atom-economical and powerful tools for preparing amides, opening previously unavailable routes from substrates other than the carboxylic acids and their derivatives. Ruthenium-based catalysts have been at the heart of these advances, and this chapter pretends to give an overview of the field. Among others, the following ruthenium-catalyzed synthetic approaches of amides will be discussed: the hydration of nitriles, the hydrolytic amidation of nitriles with amines, the rearrangement of aldoximes, the coupling of aldehydes with hydroxylamine, and the dehydrogenative amidation of alcohols, aldehydes, and esters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonate

Bn:

Benzyl

cod:

1,5-Cyclooctadiene

cot:

1,3,5,7-Cyclooctatetraene

Cy:

Cyclohexyl

Da:

Dalton

DCE:

1,2-Dichloroethane

DFT:

Density functional theory

DME:

1,2-Dimethoxyethane

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

dppb:

1,4-Bis(diphenylphosphino)butane

dppe:

1,2-Bis(diphenylphosphino)ethane

dppm:

Bis(diphenylphosphino)methane

equiv.:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

i-Bu:

iso-Butyl

IiPr:

1,3-Diisopropylimidazol-2-ylidene

i-Pr:

iso-Propyl

Me:

Methyl

min:

Minute(s)

mol:

Mole(s)

Ms:

Mesyl, methanesulfonyl

MW:

Microwave

n-Bu:

Butyl

NHC:

N-heterocyclic carbene

NSAIDs:

Non-steroidal anti-inflammatory drugs

PCyp3 :

Tricyclopentylphosphine

Pent:

Pentyl

Ph:

Phenyl

PPh2(py-4-NMe2):

2-Diphenylphosphino-4-pyridyl(dimethyl)amine

PPh2py:

2-(Diphenylphosphino)pyridine

Pr:

Propyl

PTA:

1,3,5-Triaza-7-phosphaadamantane

PVP:

Polyvinylpyrrolidone

py:

Pyridine

rt:

Room temperature

s-Bu:

sec-Butyl

t-Bu:

tert-Butyl

terpy:

2,2′:6′,2″-Terpyridine

TOF:

Turnover frequency

TON:

Turnover number

Tp:

Hydrotris(pyrazolyl)borate

Ts:

Tosyl, 4-toluenesulfonyl

References

  1. Zabicky J (1970) The chemistry of amides. Wiley, New York

    Google Scholar 

  2. Greenberg A, Breneman CM, Liebman (2000) The amide linkage: structural significance in chemistry, biochemistry and materials science. Wiley, New York

    Google Scholar 

  3. Dugger RW, Ragan JA, Ripin DHB (2005) Survey of GMP bulk reactions run in a research facility between 1985 and 2002. Org Process Res Dev 9:253

    CAS  Google Scholar 

  4. Carey JS, Laffan D, Thomson C, Williams TM (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337

    CAS  Google Scholar 

  5. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55

    CAS  Google Scholar 

  6. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827

    CAS  Google Scholar 

  7. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606

    CAS  Google Scholar 

  8. Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas – a perspective from pharmaceutical manufacturers. Green Chem 9:411

    CAS  Google Scholar 

  9. Allen CL, Williams JMJ (2011) Metal-catalysed approaches to amide bond formation. Chem Soc Rev 40:3405

    CAS  Google Scholar 

  10. Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471

    CAS  Google Scholar 

  11. Roy S, Roy S, Gribble GW (2012) Metal-catalyzed amidation. Tetrahedron 68:9867

    CAS  Google Scholar 

  12. García-Álvarez R, Crochet P, Cadierno V (2013) Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: Nitrile hydrations and beyond. Green Chem 15:46

    Google Scholar 

  13. Bode JW (2013) Reinventing amide bond formation. Top Organomet Chem 44:13

    CAS  Google Scholar 

  14. Singh C, Kumar V, Sharma U, Kumar N, Singh B (2013) Emerging catalytic methods for amide synthesis. Curr Org Synth 10:241

    Google Scholar 

  15. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotech Biochem 60:1391

    CAS  Google Scholar 

  16. Tao J, Xu JH (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:45

    Google Scholar 

  17. Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224

    CAS  Google Scholar 

  18. Li B, Su J, Tao J (2011) Enzyme and process development for production of nicotinamide. Org Process Res Dev 15:291

    CAS  Google Scholar 

  19. Kopylovich MN, Kukushkin VY, Haukka M, Fraústo da Silva JJR, Pombeiro AJL (2002) Zinc(II)/ketoxime system as a simple and efficient catalyst for hydrolysis of organonitriles. Inorg Chem 41:4789

    Google Scholar 

  20. Kukushkin VY, Pombeiro AJL (2002) Additions to metal-activated organonitriles. Chem Rev 102:1771

    CAS  Google Scholar 

  21. Kukushkin VY, Pombeiro AJL (2005) Metal-mediated and metal-catalyzed hydrolysis of nitriles. Inorg Chim Acta 358:1

    CAS  Google Scholar 

  22. Ahmed TJ, Knapp SMM, Tyler DR (2011) Frontiers in catalytic nitrile hydration: nitrile and cyanohydrin hydration catalyzed by homogeneous organometallic complexes. Coord Chem Rev 255:949

    CAS  Google Scholar 

  23. Murahashi SI, Sasao S, Saito E, Naota T (1992) Ruthenium-catalyzed hydration of nitriles and transformation of δ-keto nitriles to ene-lactams. J Org Chem 57:2521

    CAS  Google Scholar 

  24. Murahashi SI, Sasao S, Saito E, Naota T (1993) Ruthenium-catalyzed hydration of nitriles and transformation of δ-keto nitriles to ene-lactams: Total synthesis of ()-pumiliotoxin C. Tetrahedron 49:8805

    CAS  Google Scholar 

  25. Murahashi SI, Naota T (1996) A new way for efficient catalysis by using low valent ruthenium complexes as redox Lewis acid and base catalysts. Bull Chem Soc Jpn 69:1805

    CAS  Google Scholar 

  26. Murahashi SI, Takaya H (2000) Low-valent ruthenium and iridium hydride complexes as alternatives to Lewis acid and base catalysts. Acc Chem Res 33:225

    CAS  Google Scholar 

  27. Fung WK, Huang X, Man ML, Ng SM, Hung MY, Lin Z, Lau CP (2003) Dihydrogen-bond-promoted catalysis: Catalytic hydration of nitriles with the indenylruthenium hydride complex (η5-C9H7)Ru(dppm)H (dppm = bis(diphenylphosphino)methane). J Am Chem Soc 125:11539

    CAS  Google Scholar 

  28. Leung CW, Zheng W, Wang D, Ng SM, Yeung CH, Zhou Z, Lin Z, Lau CP (2007) Catalytic H/D exchange between organic compounds and D2O with TpRu(PPh3)(CH3CN)H (Tp = hydro(trispyrazolyl)borate). Reaction of TpRu(PPh3)(CH3CN)H with water to form acetamido complex TpRu(PPh3)(H2O)(NHC(O)CH3). Organometallics 26:1924

    CAS  Google Scholar 

  29. Leung CW, Zheng W, Zhou Z, Lin Z, Lau CP (2008) Mechanism of catalytic hydration of nitriles with hydrotris(pyrazolyl)borato (Tp) ruthenium complexes. Organometallics 27:4957

    CAS  Google Scholar 

  30. Li T, Bergner I, Haque FN, Zimmer-De Iuliis M, Song D, Morris RH (2007) Hydrogenation of benzonitrile to benzylamine catalyzed by ruthenium hydride complexes with P-NH-NH-P tetradentate ligands: evidence for a hydridic-protonic outer sphere mechanism. Organometallics 26:5940

    CAS  Google Scholar 

  31. Yi CS, Zeczycki TN, Lindeman SV (2008) Kinetic, spectroscopic, and X-ray crystallographic evidence for the cooperative mechanism of the hydration of nitriles catalyzed by a tetranuclear ruthenium-μ-oxo-μ-hydroxo complex. Organometallics 27:2030

    CAS  Google Scholar 

  32. Utsunomiya M, Takahashi K, Oshiki T, Takai K (2004) New ruthenium complex, method for producing the same and method for producing amide compound using the same. Jpn Kokai Tokkyo Koho JP 2004269522

    Google Scholar 

  33. Oshiki T, Yamashita H, Sawada K, Utsunomiya M, Takahashi K, Takai K (2005) Dramatic rate acceleration by a diphenyl-2-pyridylphosphine ligand in the hydration of nitriles catalyzed by Ru(acac)2 complexes. Organometallics 24:6287

    CAS  Google Scholar 

  34. Oshiki T, Hyodo I, Ishizuka A (2005) Highly reactive bifunctional chemical catalysts for the hydration of nitriles. J Synth Org Chem Jpn 68:41

    Google Scholar 

  35. Oshiki T, Takai K (2008) Method for producing amide compound and catalyst used for the same method. Jpn Kokai Tokkyo Koho JP 2008088153

    Google Scholar 

  36. Muranaka M, Hyodo I, Okumura W, Oshiki T (2011) 2-Diphenylphosphanyl-4-pyridyl(dimethyl)amine as an effective ligand for the ruthenium(II) complex catalyzed homogeneous hydration of nitriles under neutral conditions. Catal Today 164:552

    CAS  Google Scholar 

  37. Šmejkal T, Breit B (2007) Self-assembled bidentate ligands for ruthenium-catalyzed hydration of nitriles. Organometallics 26:2461

    Google Scholar 

  38. García-Álvarez R, García-Garrido, SE, Díez J, Crochet P, Cadierno V (2012) Arene-ruthenium(II) and bis(allyl)-ruthenium(IV) complexes containing 2-(diphenylphosphanyl)pyridine ligands: Potential catalysts for nitrile hydration reactions? Eur J Inorg Chem 4218

    Google Scholar 

  39. García-Álvarez R, Díez J, Crochet P, Cadierno V (2010) Arene-ruthenium(II) complexes containing amino-phosphine ligands as catalysts for nitrile hydration reactions. Organometallics 29:3955

    Google Scholar 

  40. Cadierno V, Francos J, Gimeno J (2008) Selective ruthenium-catalyzed hydration of nitriles to amides in pure aqueous medium under neutral conditions. Chem Eur J 14:6601

    CAS  Google Scholar 

  41. Cadierno V, Díez J, Francos J, Gimeno J (2010) Bis(allyl)ruthenium(IV) complexes containing water-soluble phosphane ligands: Synthesis, structure, and application as catalysts in the selective hydration of organonitriles into amides. Chem Eur J 16:9808

    CAS  Google Scholar 

  42. Lee WC, Frost BJ (2012) Aqueous and biphasic nitrile hydration catalyzed by a recyclable Ru(II) complex under atmospheric conditions. Green Chem 14:62

    CAS  Google Scholar 

  43. Frost BJ, Lee WC (2013) Nitrile hydration catalyzed by recyclable ruthenium complexes. US Pat Appl US2013/0,096,344

    Google Scholar 

  44. Lee WC, Sears JM, Enow RA, Eads K, Krogstad DA, Frost BJ (2013) Hemilabile β-aminophosphine ligands derived from 1,3,5-triaza-7-phosphaadamantane: Application in aqueous ruthenium catalyzed nitrile hydration. Inorg Chem 52:1737

    CAS  Google Scholar 

  45. García-Álvarez R, Zablocka M, Crochet P, Duhayon C, Majoral JP, Cadierno V (2013) Thiazolyl-phosphine hydrochloride salts: effective auxiliary ligands for ruthenium-catalyzed nitrile hydration reactions and related amide bond forming processes in water. Green Chem 15:2447

    Google Scholar 

  46. García-Álvarez R, Francos J, Crochet P, Cadierno V (2011) Ibuprofenamide: A convenient method of synthesis by catalytic hydration of 2-(4-isobutylphenyl)propionitrile in pure aqueous medium. Tetrahedron Lett 52:4218

    Google Scholar 

  47. García-Álvarez R, Díez J, Crochet P, Cadierno V (2011) Arene-ruthenium(II) complexes containing inexpensive tris(dimethylamino)phosphine: Highly efficient catalysts for the selective hydration of nitriles to amides. Organometallics 30:5442

    Google Scholar 

  48. Knapp SMM, Sherbow TJ, Juliette JJ, Tyler DR (2012) Cyanohydrin hydration with [Ru(η6-p-cymene)Cl2PR3] complexes. Organometallics 31:2941

    CAS  Google Scholar 

  49. Knapp SMM, Sherbow TJ, Yelle RB, Zakharov LN, Juliette JJ, Tyler DR (2013) Mechanistic investigations and secondary coordination sphere effects in the hydration of nitriles with [Ru(η6-arene)Cl2PR3] complexes. Organometallics 32:824

    CAS  Google Scholar 

  50. Knapp SMM, Sherbow TJ, Yelle RB, Juliette JJ, Tyler DR (2013) Catalytic nitrile hydration with [Ru(η6-p-cymene)Cl2(PR2R´)] complexes: Secondary coordination sphere effects with phosphine oxide and phosphinite ligands. Organometallics 32:3744

    CAS  Google Scholar 

  51. Oshiki T, Muranaka M (2012) Metal complex compound and amide production method that utilizes said metal complex compound. PCT Int Appl WO2012/017966

    Google Scholar 

  52. Ashraf SM, Berger I, Nazarov AA, Hartinger CG, Koroteev MP, Nifantev EE, Keppler BK (2008) Phosphite-derivatized ruthenium-carbohydrate complexes in the catalytic hydration of nitriles. Chem Biodiversity 5:1640

    Google Scholar 

  53. Ashraf SM, Kandioller W, Mendoza-Ferri MG, Nazarov AA, Hartinger CG, Keppler BK (2008) The hydration of chloroacetonitriles catalyzed by mono- and dinuclear RuII- and OsII-arene complexes. Chem Biodiversity 5:2060

    CAS  Google Scholar 

  54. Martín M, Horváth H, Sola E, Kathó Á, Joó F (2009) Water-soluble triisopropylphosphine complexes of ruthenium(II): synthesis, equilibria, and acetonitrile hydration. Organometallics 28:561

    Google Scholar 

  55. Cavarzan A, Scarso A, Strukul G (2010) Efficient nitrile hydration mediated by RuII catalysts in micellar media. Green Chem 12:790

    CAS  Google Scholar 

  56. Ferrer Í, Rich J, Fontrodona X, Rodríguez M, Romero I (2013) Ru(II) complexes containing dmso and pyrazolyl ligands as catalysts for nitrile hydration in environmentally friendly media. Dalton Trans 42:13461

    CAS  Google Scholar 

  57. Kumar D, Masitas CA, Nguyen TN, Grapperhaus GA (2013) Bioinspired catalytic nitrile hydration by dithiolato, sulfinato/thiolato, and sulfenato/sulfinato ruthenium complexes. Chem Commun 49:294

    CAS  Google Scholar 

  58. Ammar HB, Miao X, Fischmeister C, Toupet L, Dixneuf PH (2010) Bidentate oxazoline-imine ruthenium(II) complexes: Intermediates in the methanolysis/hydration of nitrile groups. Organometallics 29:4234

    Google Scholar 

  59. Kamezaki S, Akiyama S, Kayaki Y, Kuwata S, Ikariya T (2010) Asymmetric nitrile-hydration with bifunctional ruthenium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron Asymmetry 21:1169

    CAS  Google Scholar 

  60. Yamaguchi K, Matsushita M, Mizuno N (2004) Efficient hydration of nitriles to amides in water, catalyzed by ruthenium hydroxide supported on alumina. Angew Chem Int Ed 43:1576

    CAS  Google Scholar 

  61. Polshettiwar V, Varma RS (2009) Nanoparticle-supported and magnetically recoverable ruthenium hydroxide catalyst: Efficient hydration of nitriles to amides in aqueous medium. Chem Eur J 15:1582

    CAS  Google Scholar 

  62. Baig RBN, Varma RS (2013) Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites. Green Chem 15:398

    Google Scholar 

  63. Baig RBN, Varma RS (2012) A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides. Chem Commun 48:6220

    CAS  Google Scholar 

  64. García-Garrido SE, Francos J, Cadierno V, Basset JM, Polshettiwar V (2011) Chemistry by nanocatalysis: First example of a solid-supported RAPTA complex for organic reactions in aqueous medium. ChemSusChem 4:104

    Google Scholar 

  65. Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K (2001) Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem Commun 461

    Google Scholar 

  66. Prakash GKS, Munoz SB, Papp A, Masood K, Bychinskaya I, Mathew T, Olah GA (2012) Nafion-Ru: A sustainable catalyst for selective hydration of nitriles to amides. Asian J Org Chem 1:146

    CAS  Google Scholar 

  67. Kurata T, Tamaru A, Murata Y, Nagashima S, Okano T, Ohfucchi K (1973) Unsaturated amides. Jpn Kokai Tokkyo Koho JP 48054021

    Google Scholar 

  68. Mizuno T (2005) Method for producing amide compounds by hydration reaction of nitrile compounds. Jpn Kokai Tokkyo Koho JP 2005170821

    Google Scholar 

  69. Oshiki T, Ishizuka A (2009) Method for producing amide compound and catalyst to be used therein. Jpn Kokai Tokkyo Koho JP 2009214099

    Google Scholar 

  70. Kumar S, Das P (2013) Solid-supported ruthenium(0): An efficient heterogeneous catalyst for hydration of nitriles to amides under microwave irradiation. New J Chem 37:2987

    CAS  Google Scholar 

  71. Cobley CJ, van den Heuvel M, Abbadi A, de Vries JG (2000) Platinum catalysed hydrolytic amidation of unactivated nitriles. Tetrahedron Lett 41:2467

    CAS  Google Scholar 

  72. van Dijk AJM, Duchateau R, Hensen EJM, Meuldijk J, Koning CE (2007) Polyamide synthesis from 6-aminocapronitrile, part 2: Heterogeneously catalyzed nitrile hydrolysis with consecutive amine amidation. Chem Eur J 13:7673

    Google Scholar 

  73. Allen CL, Lapkin AA, Williams JMJ (2009) An iron-catalysed synthesis of amides from nitriles and amines. Tetrahedron Lett 50:4262

    CAS  Google Scholar 

  74. Tamura M, Tonomura T, Shimizu KI, Satsuma A (2012) CeO2-catalyzed one-pot selective synthesis of N-alkyl amides from nitriles, amines and water. Appl Catal A Gen 417–418:6

    Google Scholar 

  75. Davulcu S, Allen CL, Milne K, Williams JMJ (2013) Catalytic conversion of nitriles into secondary- and tertiary amides. ChemCatChem 5:435

    CAS  Google Scholar 

  76. Li X, Li Z, Deng H, Zhou X (2013) An efficient protocol for the preparation of amides by copper-catalyzed reactions between nitriles and amines in water. Tetrahedron Lett 54:2212

    CAS  Google Scholar 

  77. Ghodsinia SSE, Akhlaghinia B, Safaei E, Eshghi H (2013) Green and selective synthesis of N-substituted amides using water-soluble porphyrazinato copper(II) catalyst. J Braz Chem Soc 24:895

    CAS  Google Scholar 

  78. Murahashi SI, Naota T, Saito E (1986) Ruthenium-catalyzed amidation of nitriles with amines. A novel, facile route to amides and polyamides. J Am Chem Soc 108:7846

    CAS  Google Scholar 

  79. van Dijk AJM, Heyligen T, Duchateau R, Meuldijk J, Koning CE (2007) Polyamide synthesis from 6-aminocapronitrile, part 1: N-alkyl amide formation by amine amidation of a hydrolyzed nitrile. Chem Eur J 13:7664

    Google Scholar 

  80. Field L, Hughmark PB, Shumaker SH, Marshall WS (1961) Isomerization of aldoximes to amides under substantially neutral conditions. J Am Chem Soc 83:1983

    CAS  Google Scholar 

  81. Park S, Choi Y, Han H, Yang SH, Chang S (2003) Rh-catalyzed one-pot and practical transformation of aldoximes to amides. Chem Commun 1936

    Google Scholar 

  82. Allen CL, Lawrence R, Emmett L, Williams JMJ (2011) Mechanistic studies into metal-catalyzed aldoxime to amide rearrangement. Adv Synth Catal 353:3262

    CAS  Google Scholar 

  83. Okano T, Fujiwara K, Konishi H, Kiji J (1982) Application of the water-gas shift reaction. III. Reduction of oxidized nitrogen compounds with CO and H2O catalyzed by [Ru(cod)py4](BPh4)2. Bull Chem Soc Jpn 55:1975

    CAS  Google Scholar 

  84. Owston NA, Parker AJ, Williams JMJ (2007) Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org Lett 9:3599

    CAS  Google Scholar 

  85. Gnanamgari D, Crabtree RH (2009) Terpyridine ruthenium-catalyzed one-pot conversion of aldehydes into amides. Organometallics 28:922

    CAS  Google Scholar 

  86. Kumar P, Singh AK, Pandey R, Pandey DS (2011) Bio-catalysts and catalysts based on ruthenium(II) polypyridyl complexes imparting diphenyl-(2-pyridyl)-phosphine as a co-ligand. J Organomet Chem 696:3454

    CAS  Google Scholar 

  87. Raja N, Raja MU, Ramesh R (2012) Ruthenium(II) NNO pincer type catalyst for the conversion of aldehydes to amides. Inorg Chem Commun 19:51

    CAS  Google Scholar 

  88. Prabhu RN, Ramesh R (2012) Ruthenium(II) carbonyl complexes containing benzhydrazone ligands: Synthesis, structure and facile one-pot conversion of aldehydes to amides. RSC Adv 2:4515

    CAS  Google Scholar 

  89. Manikandan R, Prakash G, Kathirvel R, Viswanathamurthi P (2013) Ruthenium(II) carbonyl complexes bearing quinoline-based NNO tridentate ligands as catalyst for one-pot conversion of aldehydes to amides and O-allylation of phenols. Spectrochim Acta A 116:501

    CAS  Google Scholar 

  90. Hull JF, Hilton ST, Crabtree RH (2010) A simple Ru catalyst for the conversion of aldehydes or oximes to primary amides. Inorg Chim Acta 363:1243

    CAS  Google Scholar 

  91. García-Álvarez R, Díaz-Álvarez AE, Borge J, Crochet P, Cadierno V (2012) Ruthenium-catalyzed rearrangement of aldoximes to primary amides in water. Organometallics 31:6482

    Google Scholar 

  92. García-Álvarez R, Díaz-Álvarez AE, Crochet P, Cadierno V (2013) Ruthenium-catalyzed one-pot synthesis of primary amides from aldehydes in water. RSC Adv 3:5889

    Google Scholar 

  93. Li F, Qu P, Ma J, Zou X, Sun C (2013) Tandem synthesis of N-alkylated amides from aldoximes and alcohols by using a Ru/Ir dual-catalyst system. ChemCatChem 5:2178

    CAS  Google Scholar 

  94. Chen C, Hong SH (2011) Oxidative amide synthesis directly from alcohols with amines. Org Biomol Chem 9:20

    CAS  Google Scholar 

  95. Gunanathan C, Milstein D (2013) Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341:249

    CAS  Google Scholar 

  96. Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681

    CAS  Google Scholar 

  97. Gnanaprakasam B, Zhang J, Milstein D (2010) Direct synthesis of imines from alcohols and amines with liberation of H2. Angew Chem Int Ed 49:1468

    CAS  Google Scholar 

  98. Marr AC (2012) Organometallic hydrogen transfer and dehydrogenation catalysts for the conversion of bio-renewable alcohols. Catal Sci Technol 2:279

    CAS  Google Scholar 

  99. Naota T, Murahashi SI (1991) Ruthenium-catalyzed transformations of amino alcohols to lactams. Synlett 693

    Google Scholar 

  100. Fujita K-I, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R (2004) Synthesis of five-, six-, and seven-membered ring lactams by Cp*Rh complex-catalyzed oxidative N-heterocyclization of amino alcohols. Org Lett 6:2785

    CAS  Google Scholar 

  101. Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317:790

    CAS  Google Scholar 

  102. Gunanathan C, Milstein D (2011) Bond activation by metal-ligand cooperation: Design of “green” catalytic reactions based on aromatization-dearomatization of pincer complexes. Top Organomet Chem 37:55

    CAS  Google Scholar 

  103. Gunanathan C, Milstein D (2011) Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and “green” catalysis. Acc Chem Res 44:588

    CAS  Google Scholar 

  104. Milstein D (2010) Discovery of environmentally benign catalytic reactions of alcohols catalyzed by pyridine-based pincer Ru complexes, based on metal-ligand cooperation. Top Catal 53:915

    CAS  Google Scholar 

  105. Li H, Wang X, Huang F, Lu G, Jiang J, Wang ZX (2011) Computational study on the catalytic role of pincer ruthenium(II)-PNN complex in directly synthesizing amide from alcohol and amine: the origine of selectivity of amide over ester and imine. Organometallics 30:5233

    CAS  Google Scholar 

  106. Zeng G, Li S (2011) Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation. Inorg Chem 50:10572

    CAS  Google Scholar 

  107. Cho D, Ko KC, Lee JY (2013) Catalytic mechanism for the ruthenium-complex-catalyzed synthesis of amides from alcohols and amines: a DFT study. Organometallics 32:4571

    CAS  Google Scholar 

  108. Zeng H, Guan Z (2011) Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines. J Am Chem Soc 133:1159

    CAS  Google Scholar 

  109. Gnanaprakasam B, Balaraman E, Gunanathan C, Milstein D (2012) Synthesis of polyamides from diols and diamines with liberation of H2. J Poly Sci Part A Polymer Chem 50:1755

    CAS  Google Scholar 

  110. Milstein D, Balaraman E, Gunanathan C, Gnanaprakasam B, Zhang J (2012) Novel ruthenium complexes and their uses in processes for formation and/or hydrogenation of esters, amides and derivatives thereof. PCT Int Appl WO 2012052996

    Google Scholar 

  111. Gnanaprakasam B, Balaraman E, Ben-David Y, Milstein D (2011) Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: Ligands-controlled selectivity. Angew Chem Int Ed 50:12240

    CAS  Google Scholar 

  112. Zweifel T, Naubron JV, Grützmacher H (2009) Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew Chem Int Ed 48:559

    CAS  Google Scholar 

  113. Shimizu KI, Ohshima K, Satsuma A (2009) Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by γ-alumina supported silver cluster. Chem Eur J 15:9977

    CAS  Google Scholar 

  114. Nordstrøm LU, Vogt H, Madsen R (2008) Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J Am Chem Soc 130:17672

    Google Scholar 

  115. Ghosh SC, Muthaiah S, Zhang Y, Xu X, Hong SH (2009) Direct amide synthesis from alcohols and amines by phosphine-free ruthenium catalyst systems. Adv Synth Catal 351:2643

    CAS  Google Scholar 

  116. Ghosh SC, Hong SH (2010) Simple RuCl3-catalyzed amide synthesis from alcohols and amines. Eur J Org Chem 4266

    Google Scholar 

  117. Dam JH, Osztrovszky G, Nordstrøm LU, Madsen R (2010) Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes. Chem Eur J 16:6820

    CAS  Google Scholar 

  118. Zhang J, Senthilkumar M, Ghosh SC, Hong SH (2010) Synthesis of cyclic imides from simple diols. Angew Chem Int Ed 49:6391

    CAS  Google Scholar 

  119. Muthaiah S, Ghosh SC, Jee JE, Chen C, Zhang J, Hong SH (2010) Direct amides synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes. J Org Chem 75:3002

    CAS  Google Scholar 

  120. Makarov IS, Fristrup P, Madsen R (2012) Mechanistic investigation of ruthenium-N-heterocyclic-carbene-catalyzed amidation of amines with alcohols. Chem Eur J 18:15683

    CAS  Google Scholar 

  121. Prechtl MHG, Wobser K, Theyssen N, Ben-David Y, Milstein D, Leitner W (2012) Direct coupling of alcohols to form esters and amides with evolution of H2 using in situ formed ruthenium catalysts. Catal Sci Technol 2:2039

    CAS  Google Scholar 

  122. Pingen D, Vogt D (2014) Amino-alcohols cyclization: Selective synthesis of lactams and cyclic amines from amino-alcohols. Catal Sci Technol 4:47

    CAS  Google Scholar 

  123. Watson AJA, Maxwell AC, Williams JMJ (2009) Ruthenium-catalyzed oxidation of alcohols into amides. Org Lett 11:2667

    CAS  Google Scholar 

  124. Zhang Y, Chen C, Ghosh SC, Li Y, Hong SH (2010) Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organometallics 29:1374

    CAS  Google Scholar 

  125. Chen C, Zhang Y, Hongs H (2011) N-heterocyclic carbene based ruthenium-catalyzed direct amide synthesis from alcohols and secondary amines: involvement of esters. J Org Chem 76:10005

    CAS  Google Scholar 

  126. Prades A, Peris E, Albrecht M (2011) Oxidations and oxidative couplings catalyzed by triazolylidene ruthenium complexes. Organometallics 30:1162

    CAS  Google Scholar 

  127. Schley N, Dobereiner GE, Crabtree RH (2011) Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics 30:4174

    CAS  Google Scholar 

  128. Nova A, Balcells D, Schley ND, Dobereiner GE, Crabtree RH, Eisenstein O (2010) An experimental-theoretical study of the factors that affect the switch between ruthenium-catalyzed dehydrogenative amide formation versus amine alkylation. Organometallics 29:6548

    CAS  Google Scholar 

  129. Srimani D, Balaraman E, Hu P, Ben-David Y, Milstein D (2013) Formation of tertiary amides and dihydrogen by dehydrogenative coupling of primary alcohols with secondary amines catalyzed by ruthenium bipyridine-based pincer complexes. Adv Synth Catal 355:2525

    CAS  Google Scholar 

  130. Ortega N, Richter C, Glorius F (2013) N-formylation of amines by methanol activation. Org Lett 15:1776

    CAS  Google Scholar 

  131. Malineni J, Merkens C, Keul H, Möller M (2013) An efficient N-heterocyclic carbene based ruthenium-catalyst: application towards the synthesis of esters and amides. Catal Commun 40:80

    CAS  Google Scholar 

  132. Wang Y, Zhu D, Tang L, Wang S, Wang Z (2011) Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew Chem Int Ed 50:8917

    CAS  Google Scholar 

  133. Oishi T, Yamaguchi K, Mizuno N (2010) An efficient one-pot synthesis of nitriles from alcohols or aldehydes with NH3 catalyzed by a supported ruthenium hydroxide. Top Catal 53:479

    CAS  Google Scholar 

  134. Fu Z, Lee J, Kang B, Hong SH (2012) Dehydrogenative amide synthesis: azide as a nitrogen source. Org Lett 14:6028

    CAS  Google Scholar 

  135. Kang B, Fu Z, Hong SH (2013) Ruthenium-catalyzed redox-neutral and single-step amide synthesis from alcohol and nitrile with complete atom economy. J Am Chem Soc 135:11704

    CAS  Google Scholar 

  136. Varma RS, Naicker KP (1999) Solvent-free synthesis of amides from non-enolizable esters and amines using microwave irradiation. Tetrahedron Lett 40:6177

    Google Scholar 

  137. Gnanaprakasam B, Milstein D (2011) Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J Am Chem Soc 133:1682

    CAS  Google Scholar 

  138. Yamaguchi K, Mizuno N (2010) Green functional group transformations by supported ruthenium hydroxide catalysts. Synlett 2365

    Google Scholar 

  139. Schümperli MT, Hammond C, Hermans I (2012) Developments in the aerobic oxidation of amines. ACS Catal 2:1108

    Google Scholar 

  140. Kim JW, Yamaguchi K, Mizuno N (2008) Heterogeneously catalyzed efficient oxygenation of primary amines to amides by a supported ruthenium hydroxide catalyst. Angew Chem Int Ed 47:9249

    CAS  Google Scholar 

  141. He J, Yamaguchi K, Mizuno N (2011) Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst. J Org Chem 76:4606

    CAS  Google Scholar 

  142. Chang JWW, Chan PWH (2008) Highly efficient ruthenium(II) porphyrin catalyzed amidation of aldehydes. Angew Chem Int Ed 47:1138

    CAS  Google Scholar 

  143. Muralirajan K, Parthasarathy K, Cheng CH (2012) Ru(II)-catalyzed amidation of 2-arylpyridines with isocyanates via C-H activation. Org Lett 14:4262

    CAS  Google Scholar 

  144. Tang W, Capacci A, Sarvestani M, Wei X, Yee NK, Senanayake CH (2009) A facile and practical synthesis of N-acetyl enamides. J Org Chem 74:9528

    Google Scholar 

  145. Murugan K, Huang DW, Chien YT, Liu ST (2013) An efficient preparation of N-acetyl enamides catalyzed by Ru(II) complexes. Tetrahedron 69:268

    CAS  Google Scholar 

Download references

Acknowledgments

Our research in the field of amide-bond forming reactions was supported by MINECO of Spain (projects CTQ2006-08485/BQU, CTQ2010-14796/BQU and CSD2007-00006). We heartily wish to thank our co-workers Dr. Javier Francos and Dr. Rocío García-Álvarez for their strong commitment to this chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victorio Cadierno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crochet, P., Cadierno, V. (2014). Ruthenium-Catalyzed Amide-Bond Formation. In: Dixneuf, P., Bruneau, C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/3418_2014_78

Download citation

Publish with us

Policies and ethics