Skip to main content

New Formulas for Zincate Chemistry: Synergistic Effect and Synthetic Applications of Hetero-bimetal Ate Complexes

  • Chapter
  • First Online:
Organo-di-Metallic Compounds (or Reagents)

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 47))

Abstract

Organozincates are the oldest class of organometallic ate compounds in the history of chemistry. Their special molecular structures lead to synergetic operations which contribute to unique chemical properties. Therefore, these compounds have attracted considerable attention from organometallic chemists nowadays and also have been widely employed as an efficient synthetic tool towards various functional molecules. As a representative example, lithium zincates present many advantages such as easy preparation, adjustable reactivity/selectivity as well as diversified applicability. This chapter provides an overview of the research advances on lithium zincate, including observation history, general characterization, preparative methods, synthetic utilities as well as further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frankland E (1850) On the isolation of the organic radicals. Quart J Chem Soc 2:263–296. doi:10.1039/QJ8500200263

    Article  Google Scholar 

  2. Seyferth D (2001) Zinc alkyls, Edward Frankland, and the beginnings of main-group organometallic chemistry. Organometallics 20:2940–2955. doi:10.1021/om010439f

    Article  CAS  Google Scholar 

  3. Wanklyn JA (1858) Ueber einige neue aethylverbindungen, welche alkalimetalle enthalten. Liebigs Ann 108:67–79. doi:10.1002/jlac.18581080116

    Article  Google Scholar 

  4. Hurd DT (1948) Complex metal alkyls. J Org Chem 13:711–713. doi:10.1021/jo01163a015

    Article  CAS  Google Scholar 

  5. Wittig G, Meyer FJ, Lange G (1951) Über das verhalten von diphenylmetallen als komplexbildner. Liebigs Ann 571:167–201. doi:10.1002/jlac.19515710302

    Article  CAS  Google Scholar 

  6. von Wittig G (1958) Komplexbildung und Reaktivität in der metallorganischen Chemie. Angew Chem 70:65–71. doi:10.1002/ange.19580700302

    Article  Google Scholar 

  7. Wheatley AEH (2004) Recent developments in the synthetic and structural chemistry of lithium zincates. New J Chem 28:435–443. doi:10.1039/b314042c

    Article  CAS  Google Scholar 

  8. Harada T (2006) The chemistry of organozincate compounds. In: Rappoport Z, Marek I (eds) The chemistry of organozinc compounds. Wiley, West Sussex, pp 685–712

    Chapter  Google Scholar 

  9. Mulvey RE, Mongin F, Uchiyama M, Kondo Y (2007) Deprotonative metalation using ate compounds: synergy, synthesis, and structure building. Angew Chem Int Ed 46:3802–3824. doi:10.1002/anie.200604369

    Article  CAS  Google Scholar 

  10. Uchiyama M, Koike M, Kameda M et al (1996) Unique reactivities of new highly coordinated ate complexes of organozinc derivatives. J Am Chem Soc 118:8733–8734. doi:10.1021/ja961320e

    Article  CAS  Google Scholar 

  11. Uchiyama M, Kondo Y, Miura T, Sakamoto T (1997) First observation of Zn−CN Bond in “highly coordinated” mixed organozincates by exafs spectroscopy. J Am Chem Soc 119:12372–12373. doi:10.1021/ja971502o

    Article  CAS  Google Scholar 

  12. Uchiyama M, Kameda M, Mishima O et al (1998) New formulas for oganozincate chemistry. J Am Chem Soc 120:4934–4946. doi:10.1021/ja973855t

    Article  CAS  Google Scholar 

  13. Isobe M, Kondo S, Nagasawa N, Goto T (1977) Trialkylzinclithium [R3ZnLi]: a new reagent for conjugate addition to α, β-unsaturated ketones. Chem Lett 6:679–682. doi:10.1246/cl.1977.679

    Article  Google Scholar 

  14. Uchiyama M, Furuyama T, Kobayashi M et al (2006) Toward a protecting-group-free halogen−metal exchange reaction: practical, chemoselective metalation of functionalized aromatic halides using dianion-type zincate, tBu4ZnLi2. J Am Chem Soc 128:8404–8405. doi:10.1021/ja058246x

    Article  CAS  Google Scholar 

  15. Furuyama T, Yonehara M, Arimoto S et al (2008) Development of highly chemoselective bulky zincate complex, tBu4ZnLi2: design, structure, and practical applications in small-/macromolecular synthesis. Chem Eur J 14:10348–10356. doi:10.1002/chem.200800536

    Article  CAS  Google Scholar 

  16. Aldridge S, Downs AJ (2001) Hydrides of the main-group metals: new variations on an old theme. Chem Rev 101:3305–3366. doi:10.1021/cr960151d

    Article  CAS  Google Scholar 

  17. Kobetz P, Becker WE (1963) Preparation of sodium hydride complexes of diethylzinc and zinc chloride. Inorg Chem 2:859–859. doi:10.1021/ic50008a046

    Google Scholar 

  18. Kubas GJ, Shriver DF (1970) Nature of dialkyl- and diarylzinc hydride complexes. J Am Chem Soc 92:1949–1954. doi:10.1021/ja00710a028

    Article  CAS  Google Scholar 

  19. Uchiyama M, Furumoto S, Saito M et al (1997) Design, reactivities, and practical application of dialkylzinc hydride ate complexes generated in situ from dialkylzinc and metal hydride: a new methodology for activation of NaH and LiH under mild conditions. J Am Chem Soc 119:11425–11433. doi:10.1021/ja9718477

    Article  CAS  Google Scholar 

  20. Aida T, Kuboki N, Kato K et al (2005) Use of CaH2 as a reductive hydride source: reduction of ketones and imines with CaH2/ZnX2 in the presence of a Lewis acid. Tetrahedron Lett 46:1667–1669. doi:10.1016/j.tetlet.2005.01.058

    Article  CAS  Google Scholar 

  21. Tsuhako A, He J-Q, Mihara M et al (2007) Carbonyl reduction with CaH2 and R3SiCl catalyzed by ZnCl2. Tetrahedron Lett 48:9120–9123. doi:10.1016/j.tetlet.2007.10.123

    Article  CAS  Google Scholar 

  22. Lennartson A, Håkansson M, Jagner S (2007) Facile synthesis of well-defined sodium hydridoalkylzincates(II). Angew Chem Int Ed 46:6678–6680. doi:10.1002/anie.200701477

    Article  CAS  Google Scholar 

  23. Spielmann J, Piesik D, Wittkamp B et al (2009) Convenient synthesis and crystal structure of a monomeric zinc hydride complex with a three-coordinate metal center. Chem Commun 3455–3456. doi:10.1039/b906319f

    Google Scholar 

  24. Kahnes M, Görls H, González L, Westerhausen M (2010) Synthesis and catalytic reactivity of Bis(alkylzinc)-hydride-di(2-pyridylmethyl)amides. Organometallics 29:3098–3108. doi:10.1021/om100153z

    Article  CAS  Google Scholar 

  25. Campbell R, Cannon D, García-Álvarez P et al (2011) Main group multiple C–H/N–H bond activation of a diamine and isolation of a molecular dilithium zincate hydride: experimental and DFT evidence for alkali metal–zinc synergistic effects. J Am Chem Soc 133:13706–13717. doi:10.1021/ja205547h

    Article  CAS  Google Scholar 

  26. Coles MP, El-Hamruni SM, Smith JD, Hitchcock PB (2008) An organozinc hydride cluster: an encapsulated tetrahydrozincate? Angew Chem Int Ed 47:10147–10150. doi:10.1002/anie.200804224

    Article  CAS  Google Scholar 

  27. Marciniak W, Merz K, Moreno M, Driess M (2006) Convenient access to homo- and heterobimetallic alkoxo hydridozinc clusters of formula [(HZnOtBu)4-n(LiOtBu)n] (n = 0, 1, 2, 3). Organometallics 25:4931–4933. doi:10.1021/om060443x

    Article  CAS  Google Scholar 

  28. Kondo Y, Shilai M, Uchiyama M, Sakamoto T (1999) TMP−zincate as highly chemoselective base for directed ortho metalation. J Am Chem Soc 121:3539–3540. doi:10.1021/ja984263t

    Article  CAS  Google Scholar 

  29. Imahori T, Uchiyama M, Sakamoto T, Kondo Y (2001) Regiocontrolled deprotonative-zincation of bromopyridines using aminozincates. Chem Commun 2450–2451. doi:10.1039/b108252n

    Google Scholar 

  30. Fabicon RM, Parvez M, Richey HG Jr (1991) Formation of organozincate ions from diorganozinc compounds and potassium alkoxides. J Am Chem Soc 113:1412–1414. doi:10.1021/ja00004a053

    Article  CAS  Google Scholar 

  31. Harada T, Katsuhira T, Hattori K, Oku A (1993) Stereoselective carbon-carbon bond-forming reaction of 1,1-dibromocyclopropanes via 1-halocyclopropylzincates. J Org Chem 58:2958–2965. doi:10.1021/jo00063a010

    Article  CAS  Google Scholar 

  32. Aggarwal VK, Sommer K (2006) Rearrangements of organozinc compounds. In: Rappoport Z, Marek I (eds) The chemistry of organozinc compounds. Wiley, West Sussex, pp 595–640

    Chapter  Google Scholar 

  33. Lombardo M, Trombini C (2006) The chemistry of zinc enolates. In: Rappoport Z, Marek I (eds) The chemistry of organozinc compounds. Wiley, West Sussex, pp 797–862

    Chapter  Google Scholar 

  34. Ryu I, Ikebe M, Sonoda N, Yamato S, Yamamura G, Komatsu M (2000) Conjugate addition of zincates derived from ketone α, β-dianions to enones. An access to unsymmetrical 1,6-diketones. Tetrahedron Lett 41:5689–5692. doi:10.1016/S0040-4039(00)00925-4

    Article  CAS  Google Scholar 

  35. Okuda Y, Wakamatsu K, Tűckmantel W, Oshima K, Nozaki H (1985) Copper catalyzed silylzincation of acetylenes. Tetrahedron Lett 26:4629–4632. doi:10.1016/S0040-4039(00)98770-7

    Article  CAS  Google Scholar 

  36. Krief A, Provins L, Dumont W (1999) Metal-mediated, completely diastereofacial conjugate addition of trialkylstannylmetal reagents to γ-alkoxy-α, β-unsaturated esters. Angew Chem Int Ed 38:1946–1948. doi:10.1002/(SICI)1521-3773(19990712)38:13/14<1946::AID-ANIE1946>3.0.CO;2-9

    Article  CAS  Google Scholar 

  37. Krasovskiy A, Malakhov V, Gavryushin A, Knochel P (2006) Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew Chem Int Ed 45:6040–6044. doi:10.1002/anie.200601450

    Article  CAS  Google Scholar 

  38. Koszinowski K, Böhrer P (2009) Aggregation and reactivity of organozincate anions probed by electrospray mass spectrometry. Organometallics 28:100–110. doi:10.1021/om8007037

    Article  CAS  Google Scholar 

  39. Koszinowski K, Böhrer P (2009) Formation of organozincate anions in LiCl-mediated zinc insertion reactions. Organometallics 28:771–779. doi:10.1021/om800947t

    Article  CAS  Google Scholar 

  40. Achonduh GT, Hadei N, Valente C et al (2010) On the role of additives in alkyl–alkyl Negishi cross-couplings. Chem Commun 46:4109–4111. doi:10.1039/c002759f

    Article  CAS  Google Scholar 

  41. Hunter HN, Hadei N, Blagojevic V et al (2011) Identification of a higher-order organozincate intermediate involved in Negishi cross-coupling reactions by mass spectrometry and NMR spectroscopy. Chem Eur J 17:7845–7851. doi:10.1002/chem.201101029

    Article  CAS  Google Scholar 

  42. Fleckenstein JE, Koszinowski K (2011) Lithium organozincate complexes LiRZnX2: common species in organozinc chemistry. Organometallics 30:5018–5026. doi:10.1021/om200637s

    Article  CAS  Google Scholar 

  43. Harada T, Hara D, Hattori K, Oku A (1988) Generation and alkylation reaction of 1-bromoalkenylzincate. Tetrahedron Lett 29:3821–3824. doi:10.1016/S0040-4039(00)82124-3

    Article  CAS  Google Scholar 

  44. Harada T, Katsuhira T, Oku A (1992) Stereochemistry in carbenoid formation by bromine/lithium and bromine/zinc exchange reactions of 1,1-dibromoalkenes: higher reactivity of the sterically more hindered bromine atom. J Org Chem 57:5805–5807. doi:10.1021/jo00048a002

    Article  CAS  Google Scholar 

  45. Harada T, Katsuhira T, Hara D, Kotani Y, Maejima K, Kaji R, Oku A (1993) Reactions of 1,1-dihaloalkenes with triorganozincates: a novel method for the preparation of alkenylzinc species associated with carbon-carbon bond formation. J Org Chem 58:4897–4907. doi:10.1021/jo00070a027

    Article  CAS  Google Scholar 

  46. Harada T, Katsuhira T, Hattori K, Oku A (1994) Stereochemistry in carbenoid formation by bromine/lithium and bromine/zinc exchange reactions of gem-dibromo compounds. Tetrahedron 50:7987–8002. doi:10.1016/S0040-4020(01)85284-4

    Article  CAS  Google Scholar 

  47. Harada T, Hattori K, Katsuhira T, Oku A (1989) Generation and alkylation reaction of lithium 1-halocyclopropylzincate. Tetrahedron Lett 30:6035–6038. doi:10.1016/S0040-4039(01)93847-X

    Article  CAS  Google Scholar 

  48. Harada T, Kotani Y, Katsuhira T, Oku A (1991) Novel method for generation of secondary organozinc reagent: application to tandem carbon-carbon bond formation reaction of 1,1-dibromoalkane. Tetrahedron Lett 32:1573–1576. doi:10.1016/S0040-4039(00)74275-4

    Article  CAS  Google Scholar 

  49. Kondo Y, Takazawa N, Yamazaki C, Sakamoto T (1994) Halogen-zinc exchange reaction of haloaromatics with lithium trimethylzincate. J Org Chem 59:4717–4718. doi:10.1021/jo00096a005

    Article  CAS  Google Scholar 

  50. Takada T, Sakurai H, Hirao T (2001) Oxovanadium(V)-induced oxidative ligand coupling of aryltrimethylzincates prepared from bromoarenes and dilithium tetramethylzincate. J Org Chem 66:300–302. doi:10.1021/jo000976u

    Article  CAS  Google Scholar 

  51. Harada T, Kaneko T, Fujiwara T, Oku A (1997) A new method for preparing benzylzinc reagents via homologation of triorganozincates. J Org Chem 62:8966–8967. doi:10.1021/jo971615q

    Article  CAS  Google Scholar 

  52. Harada T, Kaneko T, Fujiwara T, Oku A (1998) A novel 1,2-migration of arylzincates bearing a leaving group at benzylic position: application to a three-component coupling of p-iodobenzyl derivatives, trialkylzincates, and electrophiles leading to functionalized p-substituted benzenes. Tetrahedron 54:9317–9332. doi:10.1016/S0040-4020(98)00569-9

    Article  CAS  Google Scholar 

  53. Harada T, Chiba M, Oku A (1999) Novel homologation reaction of arylzincates bearing a leaving group at the ortho and meta positions. J Org Chem 64:8210–8213. doi:10.1021/jo990937m

    Article  CAS  Google Scholar 

  54. Uchiyama M, Miyoshi T, Kajihara Y et al (2002) Generation of functionalized asymmetric benzynes with TMP-zincates: effects of ligands on selectivity and reactivity of zincates. J Am Chem Soc 124:8514–8515. doi:10.1021/ja0202199

    Article  CAS  Google Scholar 

  55. Nakamura S, Liu C-Y, Muranaka A, Uchiyama M (2009) Theoretical study on the halogen-zinc exchange reaction by using organozincate compounds. Chem Eur J 15:5686–5694. doi:10.1002/chem.200802393

    Article  CAS  Google Scholar 

  56. Chau NTT, Meyer M, Komagawa S et al (2010) Homoleptic zincate-promoted room-temperature halogen-metal exchange of bromopyridines. Chem Eur J 16:12425–12433. doi:10.1002/chem.201001664

    Article  CAS  Google Scholar 

  57. Kneisel FF, Dochnahl M, Knochel P (2004) Nucleophilic catalysis of the iodine–zinc exchange reaction: preparation of highly functionalized diaryl zinc compounds. Angew Chem Int Ed 43:1017–1021. doi:10.1002/anie.200353316

    Article  CAS  Google Scholar 

  58. Kneisel FF, Leuser H, Knochel P (2005) Preparation and reactions of highly functionalized bis-arylzinc reagents using a Li(acac)-catalyzed iodine-zinc exchange. Synthesis 2625–2629. doi:10.1055/s-2005-872097

    Google Scholar 

  59. Mulvey RE (2009) Avant-garde metalating agents: structural basis of alkali-metal-mediated metalation. Acc Chem Res 42:743–755. doi:10.1021/ar800254y

    Article  CAS  Google Scholar 

  60. Mulvey RE (2013) An alternative picture of alkali-metal-mediated metallation: cleave and capture chemistry. Dalton Trans 42:6676–6693. doi:10.1039/c3dt00053b

    Article  CAS  Google Scholar 

  61. Haag B, Mosrin M, Ila H et al (2011) Regio- and chemoselective metalation of arenes and heteroarenes using hindered metal amide bases. Angew Chem Int Ed 50:9794–9824. doi:10.1002/anie.201101960

    Article  CAS  Google Scholar 

  62. Clegg W, Dale SH, Drummond AM et al (2006) Alkali-metal-mediated zincation of anisole: synthesis and structures of three instructive ortho-zincated complexes. J Am Chem Soc 128:7434–7435. doi:10.1021/ja061898g

    Article  CAS  Google Scholar 

  63. Clegg W, Dale SH, Hevia E et al (2006) Pre-Metalation structural insights into the use of alkali-metal-mediated zincation for directed ortho-metalation of a tertiary aromatic amide. Angew Chem Int Ed 45:2370–2374. doi:10.1002/anie.200503202

    Article  CAS  Google Scholar 

  64. Clegg W, Dale SH, Harrington RW et al (2006) Post-metalation structural insights into the use of alkali-metal-mediated zincation for directedortho-metalation of a tertiary aromatic amide. Angew Chem Int Ed 45:2374–2377. doi:10.1002/anie.200503213

    Article  CAS  Google Scholar 

  65. Uchiyama M, Matsumoto Y, Nobuto D et al (2006) Structure and reaction pathway of TMP-zincate: amido base or alkyl base? J Am Chem Soc 128:8748–8750. doi:10.1021/ja060489h

    Article  CAS  Google Scholar 

  66. Uchiyama M, Matsumoto Y, Usui S et al (2007) Origin of chemoselectivity of TMP zincate bases and differences between TMP zincate and alkyl lithium reagents: a DFT study on model systems. Angew Chem Int Ed 46:926–929. doi:10.1002/anie.200602664

    Article  CAS  Google Scholar 

  67. Kondo Y, Morey JV, Morgan JC et al (2007) On the kinetic and thermodynamic reactivity of lithium di(alkyl)amidozincate Bases in directed ortho metalation. J Am Chem Soc 129:12734–12738. doi:10.1021/ja072118m

    Article  CAS  Google Scholar 

  68. García F, McPartlin M, Morey JV et al (2008) Suppressing the anionic fries rearrangement of aryl dialkylcarbamates; the isolation of a crystalline ortho-deprotonated carbamate. Eur J Org Chem 2008:644–647. doi:10.1002/ejoc.200701096

    Article  Google Scholar 

  69. Clegg W, Conway B, Hevia E et al (2009) Closer insight into the reactivity of TMP−dialkyl zincates in directed ortho-zincation of anisole: experimental evidence of amido basicity and structural elucidation of key reaction intermediates. J Am Chem Soc 131:2375–2384. doi:10.1021/ja8087168

    Article  CAS  Google Scholar 

  70. Schwab PFH, Fleischer F, Michl J (2002) Preparation of 5-brominated and 5,5′-dibrominated 2,2′-bipyridines and 2,2′-bipyrimidines. J Org Chem 67:443–449. doi:10.1021/jo010707j

    Article  CAS  Google Scholar 

  71. Seo HJ, Yoon SJ, Jang SH, Namgoong SK (2011) Trimethyl borate-induced one-pot homologation reactions of isoquinoline with di-tert-butyl-TMP zincate. Tetrahedron Lett 52:3747–3750. doi:10.1016/j.tetlet.2011.05.045

    Article  CAS  Google Scholar 

  72. Blair VL, Blakemore DC, Hay D et al (2011) Alkali-metal mediated zincation of N-heterocyclic substrates using the lithium zincate complex, (THF)Li(TMP)Zn(tBu)2 and applications in in situ cross coupling reactions. Tetrahedron Lett 52:4590–4594. doi:10.1016/j.tetlet.2011.06.090

    Article  CAS  Google Scholar 

  73. Armstrong DR, Blair VL, Clegg W et al (2010) Structural basis for regioisomerization in the alkali-metal-mediated zincation (AMMZn) of trifluoromethyl benzene by isolation of kinetic and thermodynamic intermediates. J Am Chem Soc 132:9480–9487. doi:10.1021/ja1038598

    Article  CAS  Google Scholar 

  74. Uchiyama M, Kobayashi Y, Furuyama T et al (2008) Generation and suppression of 3-/4-functionalized benzynes using zinc ate base (TMP−Zn−ate): new approaches to multisubstituted benzenes. J Am Chem Soc 130:472–480. doi:10.1021/ja071268u

    Article  CAS  Google Scholar 

  75. Seggio A, Chevallier F, Vaultier M, Mongin F (2007) Lithium-mediated zincation of pyrazine, pyridazine, pyrimidine, and quinoxaline. J Org Chem 72:6602–6605. doi:10.1021/jo0708341

    Article  CAS  Google Scholar 

  76. Seggio A, Lannou M-I, Chevallier F et al (2007) Ligand-activated lithium-mediated zincation of n-phenylpyrrole. Chem Eur J 13:9982–9989. doi:10.1002/chem.200700608

    Article  CAS  Google Scholar 

  77. L’Helgoual’c J-M, Seggio A, Chevallier F et al (2008) Deprotonative metalation of five-membered aromatic heterocycles using mixed lithium−zinc species. J Org Chem 73:177–183. doi:10.1021/jo7020345

    Article  Google Scholar 

  78. Snégaroff K, Komagawa S, Chevallier F et al (2010) Deprotonative metalation of substituted benzenes and heteroaromatics using amino/alkyl mixed lithium-zinc combinations. Chem Eur J 16:8191–8201. doi:10.1002/chem.201000543

    Article  Google Scholar 

  79. Dayaker G, Sreeshailam A, Chevallier F et al (2010) Deprotonative metallation of ferrocenes using mixed lithium–zinc and lithium–cadmium combinations. Chem Commun 46:2862–2864. doi:10.1039/b924939g

    Article  CAS  Google Scholar 

  80. Putzer MA, Neumüller B, Dehnicke K (1997) Synthese und kristallstrukturen der zinkate [Na(12-Krone-4)2][Zn{N(SiMe3)2}3] und [Na(12-Krone-4)2]2[Zn(CC–Ph)3(THF)][Zn(CCPh)3]. Anorg allg Chem 623:539–544. doi:10.1002/zaac.19976230184

    Article  CAS  Google Scholar 

  81. Forbes GC, Kennedy AR, Mulvey RE, Rodger PJA (2001) TEMPO: a novel chameleonic ligand for s-block metal amide chemistry. Chem Commun 1400–1401. doi:10.1039/b104937m

    Google Scholar 

  82. Clegg W, Forbes GC, Kennedy AR et al (2003) Potassium–zinc induced synergic enhancement of the basicity of hexamethyldisilazide (HMDS) towards methylbenzene molecules. Chem Commun 406–407. doi:10.1039/b211392a

    Google Scholar 

  83. Mulvey RE (2001) s-Block metal inverse crowns: synthetic and structural synergism in mixed alkali metal–magnesium (or zinc) amide chemistry. Chem Commun 1049–1056. doi:10.1039/b101576l

    Google Scholar 

  84. García-Álvarez P, Mulvey RE, Parkinson JA (2011) “LiZn(TMP)3”, a zincate or a turbo-lithium amide reagent? Dosy NMR spectroscopic evidence. Angew Chem Int Ed 50:9668–9671. doi:10.1002/anie.201104297

    Article  Google Scholar 

  85. Barley HRL, Clegg W, Dale SH et al (2005) Alkali-metal-mediated zincation of ferrocene: synthesis, structure, and reactivity of a lithium-TMP-zincate reagent. Angew Chem Int Ed 44:6018–6021. doi:10.1002/anie.200501560

    Article  CAS  Google Scholar 

  86. Hevia E, Kennedy AR, Klett J, McCall MD (2009) Direct lateral metallation using alkali-metal mediated zincation (AMMZn): SiC–H vs.Si–O bond cleavage. Chem Commun 3240–3242. doi:10.1039/b903592c

    Google Scholar 

  87. Wakamatsu K, Nonaka T, Okuda Y, Tückmantel W, Oshima K, Utimoto K, Nozaki H (1986) Transition-metal catalyzed silylzincation and silylalumination of acetylenic compounds. Tetrahedron 42:4427–4436. doi:10.1016/S0040-4020(01)87282-3

    Article  CAS  Google Scholar 

  88. Nakamura S, Uchiyama M, Ohwada T (2004) Chemoselective silylzincation of functionalized terminal alkynes using dianion-type zincate (SiBNOL-Zn-ate): regiocontrolled synthesis of vinylsilanes. J Am Chem Soc 126:11146–11147. doi:10.1021/ja047144o

    Article  CAS  Google Scholar 

  89. Nakamura S, Yonehara M, Uchiyama M (2008) Silylmetalation of alkenes. Chem Eur J 14:1068–1078. doi:10.1002/chem.200701118

    Article  CAS  Google Scholar 

  90. Nakamura S, Uchiyama M, Ohwada T (2005) Cp2TiCl2-catalyzed regio- and chemoselective one-step synthesis of γ-substituted allylsilanes from terminal alkenes using dianion-type zincate (SiSiNOL-Zn-ate). J Am Chem Soc 127:13116–13117. doi:10.1021/ja0541074

    Google Scholar 

  91. Nakamura S, Uchiyama M (2007) Regio- and chemoselective silylmetalation of functionalized terminal alkenes. J Am Chem Soc 129:28–29. doi:10.1021/ja066864n

    Article  CAS  Google Scholar 

  92. Yonehara M, Nakamura S, Muranaka A, Uchiyama M (2010) Regioselective silylzincation of phenylallene derivatives. Chem Asian J 5:452–455. doi:10.1002/asia.200900452

    Article  CAS  Google Scholar 

  93. Auer G, Oestreich M (2006) Silylzincation of carbon–carbon multiple bonds revisited. Chem Commun 311–313. doi:10.1039/b513528a

    Google Scholar 

  94. Ochiai H, Jang M, Hirano K et al (2008) Nickel-catalyzed carboxylation of organozinc reagents with CO2. Org Lett 10:2681–2683. doi:10.1021/ol800764u

    Article  CAS  Google Scholar 

  95. McCann LC, Hunter HN, Clyburne JAC, Organ MG (2012) Higher-order zincates as transmetalators in alkyl-alkyl Negishi cross-coupling. Angew Chem Int Ed 51:7024–7027. doi:10.1002/anie.201203547

    Article  CAS  Google Scholar 

  96. Wang C, Ozaki T, Takita R, Uchiyama M (2012) Aryl ether as a Negishi coupling partner: an approach for constructing C-C bonds under mild conditions. Chem Eur J 18:3482–3485. doi:10.1002/chem.201103784

    Article  CAS  Google Scholar 

  97. Kobayashi M, Matsumoto Y, Uchiyama M, Ohwada T (2004) A new chemoselective anionic polymerization method for poly(N-isopropylacrylamide) (PNIPAm) in aqueous media: design and application of bulky zincate possessing little basicity. Macromolecules 37:4339–4341. doi:10.1021/ma0400261

    Article  CAS  Google Scholar 

  98. Higashihara T, Goto E, Ueda M (2012) Purification-free and protection-free synthesis of regioregular poly(3-hexylthiophene) and poly(3-(6-hydroxyhexyl)thiophene) using a zincate complex of tBu4ZnLi2. ACS Macro Lett 1:167–170. doi:10.1021/mz200128d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Uchiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uchiyama, M., Wang, C. (2014). New Formulas for Zincate Chemistry: Synergistic Effect and Synthetic Applications of Hetero-bimetal Ate Complexes. In: Xi, Z. (eds) Organo-di-Metallic Compounds (or Reagents). Topics in Organometallic Chemistry, vol 47. Springer, Cham. https://doi.org/10.1007/3418_2013_72

Download citation

Publish with us

Policies and ethics