Skip to main content

Developing Catalytic Asymmetric Acetalizations

  • Chapter
  • First Online:
Inventing Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 44))

Abstract

Acetals are among the most common stereocenters in Nature. They form glycosidic bonds that link together essential molecules of life, carbohydrates, including starch and cellulose, the most abundant organic material on Earth. Stereogenic acetals are also common motifs in other natural products, from small insect pheromones to highly complex spiroacetal polyketides. Although far less common than O,O-acetals, chiral N,N-, N,O-, and N,S-acetals are structural motifs also found in a number of natural products and pharmaceuticals. Here, recent progress towards chiral acetals using asymmetric Brønsted acid catalysis is summarized, with particular emphasis on O,O-acetalizations. In this context the development of novel catalyst classes, namely spirocyclic phosphoric acids and confined Brønsted acids, proved crucial and is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122:9336–9337

    Article  CAS  Google Scholar 

  2. Seayad J, Seayad AM, List B (2006) Catalytic asymmetric Pictet-Spengler reaction. J Am Chem Soc 128:1086–1087

    Article  CAS  Google Scholar 

  3. Lee A, Michrowska A, Sulzer-Mosse A, List B (2011) The catalytic asymmetric Knoevenagel condensation. Angew Chem Int Ed 50:1707–1710

    Article  CAS  Google Scholar 

  4. Müller S, Webber MJ, List B (2011) The catalytic asymmetric Fischer indolization. J Am Chem Soc 133:18534–18537

    Article  Google Scholar 

  5. Carey FA (2006) Organic chemistry, 6th edn. McGraw-Hill, New York

    Google Scholar 

  6. Aho JE, Pihko PM, Rissa TK (2005) Chem Rev 105:4406

    Article  CAS  Google Scholar 

  7. Perron F, Albizati KF (1989) Chem Rev 89:1617

    Article  CAS  Google Scholar 

  8. Francke W, Kitching W (2001) Curr Org Chem 5:233

    Article  CAS  Google Scholar 

  9. Akiyama T (2007) Chem Rev 107:5744

    Article  CAS  Google Scholar 

  10. Terada M (2010) Synthesis 1929

    Google Scholar 

  11. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Angew Chem Int Ed 43:1566

    Article  CAS  Google Scholar 

  12. Uraguchi D, Terada M (2004) J Am Chem Soc 126:5356

    Article  CAS  Google Scholar 

  13. Reisman SE, Doyle AG, Jacobsen EN (2008) J Am Chem Soc 130:7198

    Article  CAS  Google Scholar 

  14. Terada M, Tanaka H, Sorimachi K (2009) J Am Chem Soc 131:3430

    Article  CAS  Google Scholar 

  15. Zhang Q-W, Fan C-A, Zhang H-J, Tu Y-Q, Zhao Y-M, Gu P, Chen Z-M (2009) Angew Chem Int Ed 48:8572

    Article  CAS  Google Scholar 

  16. Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC (2005) J Am Chem Soc 127:15696

    Article  CAS  Google Scholar 

  17. Liang Y, Rowland EB, Rowland GB, Perman JA, Antilla JC (2007) Chem Commun 4477

    Google Scholar 

  18. Li G, Fronczek FR, Antilla JC (2008) J Am Chem Soc 130:12216

    Article  CAS  Google Scholar 

  19. Cheng X, Vellalath S, Goddard R, List B (2008) J Am Chem Soc 130:15786

    Article  CAS  Google Scholar 

  20. Vellalath S, Čorić I, List B (2010) Angew Chem Int Ed 49:9749

    Article  CAS  Google Scholar 

  21. Rueping M, Antonchick AP, Sugiono E, Grenader K (2009) Angew Chem Int Ed 48:908

    Article  CAS  Google Scholar 

  22. Ingle GK, Mormino MG, Wojtas L, Antilla JC (2011) Org Lett 13:4822

    Article  CAS  Google Scholar 

  23. Nagano H, Katsuki T (2002) Chem Lett 31:782

    Article  Google Scholar 

  24. Čorić I, Vellalath S, List B (2010) J Am Chem Soc 132:8536

    Article  Google Scholar 

  25. Čorić I, Müller S, List B (2010) J Am Chem Soc 132:17370

    Article  Google Scholar 

  26. Vedejs E, Jure M (2005) Angew Chem Int Ed 44:3974

    Article  CAS  Google Scholar 

  27. Kourist R, Domínguez de María P, Bornscheuer UT (2008) Chembiochem 9:491

    Article  CAS  Google Scholar 

  28. List B, Shabat D, Zhong G, Turner JM, Li A, Bui T, Anderson J, Lerner RA, Barbas CF III (1999) J Am Chem Soc 121:7283

    Article  CAS  Google Scholar 

  29. S-y Tosaki, Hara K, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M (2006) J Am Chem Soc 128:11776

    Article  Google Scholar 

  30. Hara K, Tosaki S-y, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M (2009) Tetrahedron 65:5030

    Article  CAS  Google Scholar 

  31. Shintani R, Takatsu K, Hayashi T (2008) Org Lett 10:1191

    Article  CAS  Google Scholar 

  32. Jarvo ER, Evans CA, Copeland GT, Miller SJ (2001) J Org Chem 66:5522

    Article  CAS  Google Scholar 

  33. Angione MC, Miller SJ (2006) Tetrahedron 62:5254

    Article  CAS  Google Scholar 

  34. Zhao Y, Mitra AW, Hoveyda AH, Snapper ML (2007) Angew Chem Int Ed 46:8471

    Article  CAS  Google Scholar 

  35. Vedejs E, Chen X (1997) J Am Chem Soc 119:2584

    Article  CAS  Google Scholar 

  36. Dehli JR, Gotor V (2002) Chem Soc Rev 31:365

    Article  CAS  Google Scholar 

  37. Akiyama T, Saitoh Y, Morita H, Fuchibe K (2005) Adv Synth Catal 347:1523

    Article  CAS  Google Scholar 

  38. Birman VB, Rheingold AL, Lam K-C (1999) Tetrahedron Asymmetry 10:125

    Article  CAS  Google Scholar 

  39. Xie J-H, Zhou Q-L (2008) Acc Chem Res 41:581

    Article  CAS  Google Scholar 

  40. Chung YK, Fu GC (2009) Angew Chem Int Ed 48:2225

    Article  CAS  Google Scholar 

  41. Jiang M, Zhu S-F, Yang Y, Gong L-Z, Zhou X-G, Zhou Q-L (2006) Tetrahedron Asymmetry 17:384

    Article  CAS  Google Scholar 

  42. Hoffmann S, Seayad AM, List B (2005) Angew Chem Int Ed 44:7424

    Article  CAS  Google Scholar 

  43. Adair G, Mukherjee S, List B (2008) Aldrichimica Acta 41:31

    CAS  Google Scholar 

  44. Xu F, Huang D, Han C, Shen W, Lin X, Wang Y (2010) J Org Chem 75:8677

    Article  CAS  Google Scholar 

  45. Cohen P, Holmes CFB, Tsukitani Y (1990) Trends Biochem Sci 15:98

    Article  CAS  Google Scholar 

  46. Singh SB, Zink DL, Heimbach B, Genilloud O, Teran A, Silverman KC, Lingham RB, Felock P, Hazuda DJ (2002) Org Lett 4:1123

    Article  CAS  Google Scholar 

  47. Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf LK (1967) J Am Chem Soc 89:5737

    Article  CAS  Google Scholar 

  48. Ueno T, Takahashi H, Oda M, Mizunuma M, Yokoyama A, Goto Y, Mizushina Y, Sakaguchi K, Hayashi H (2000) Biochemistry 39:5995

    Article  CAS  Google Scholar 

  49. Uckun FM, Mao C, Vassilev AO, Huang H, Jan S-T (2000) Bioorg Med Chem Lett 10:541

    Article  CAS  Google Scholar 

  50. Barun O, Kumar K, Sommer S, Langerak A, Mayer TU, Müller O, Waldmann H (2005) Eur J Org Chem 4773

    Google Scholar 

  51. Zinzalla G, Milroy L-G, Ley SV (2006) Org Biomol Chem 4:1977

    Article  CAS  Google Scholar 

  52. Brasholz M, Sörgel S, Azap C, Reißig H-U (2007) Eur J Org Chem 3801

    Google Scholar 

  53. Baker R, Herbert R, Howse PE, Jones OT, Francke W, Reith W (1980) J Chem Soc Chem Commun 52

    Google Scholar 

  54. Haniotakis G, Francke W, Mori K, Redlich H, Schurig V (1986) J Chem Ecol 12:1559

    Article  CAS  Google Scholar 

  55. Nakashima D, Yamamoto H (2006) J Am Chem Soc 128:9626

    Article  CAS  Google Scholar 

  56. Klussmann M, Ratjen L, Hoffmann S, Wakchaure V, Goddard R, List B (2010) Synlett 2189

    Google Scholar 

  57. Čorić I, List B (2012) Nature 483:315

    Google Scholar 

  58. I. Čorić (2012) Asymmetric Brønsted Acid Catalysis: Acetals & Confined Catalysts, Köln University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin List .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čorić, I., Vellalath, S., Müller, S., Cheng, X., List, B. (2012). Developing Catalytic Asymmetric Acetalizations. In: Gooßen, L. (eds) Inventing Reactions. Topics in Organometallic Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2012_53

Download citation

Publish with us

Policies and ethics