Skip to main content

Asymmetric Autocatalysis of Pyrimidyl Alkanol

  • Chapter
  • First Online:
Book cover Inventing Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 44))

Abstract

We have discovered an asymmetric autocatalysis in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde, where the product, 5-pyrimidyl alkanol, acts as highly efficient asymmetric autocatalyst. Asymmetric autocatalysis proceeded quantitatively (>99%), affording itself as a near enantiomerically pure (>99.5% ee) product. An extremely low enantiomeric excess (ca. 0.00005% ee) can automultiply during three consecutive asymmetric autocatalysis to >99.5% ee. Circularly polarized light, quartz, chiral organic crystals, and statistical fluctuation of ee in racemate, which are considered a possible candidate for the origin of chirality, act as the chiral source in asymmetric autocatalysis. Asymmetric autocatalysis has the enormous power to recognize the isotope chirality arising from the small difference between carbon (carbon-13/carbon-12) and hydrogen (D/H) isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDL:

Below the detectable level

Bu:

Butyl

CD:

Circular dichroism

CPL:

Circularly polarized light

DAIB:

3-Exo-(dimethylamino) isoborneol

DMNE:

N,N-dimethylnorephedrine

DPMPM:

Diphenyl(1-methylpyrrolidin-2-yl)methanol

ee:

Enantiomeric excess

Et:

Ethyl

i :

Iso

l :

Left-handed

n :

Normal

PEAE:

2-[(1-phenylethyl)amino]-ethanol

Pr:

Propyl

R :

Rectus

r :

Right-handed

S :

Sinister

t :

Tertiary

References

  1. Soai K, Shibata T, Sato I (2000) Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc Chem Res 33:382–390. doi: 10.1021/ar9900820

    Article  CAS  Google Scholar 

  2. Soai K, Shibata T, Sato I (2004) Discovery and development of asymmetric autocatalysis. Bull Chem Soc Jpn 77:1063–1073. doi: 10.1246/bcsj.77.1063

    Article  CAS  Google Scholar 

  3. Soai K, Kawasaki T (2006) Discovery of asymmetric autocatalysis with amplification of chirality and its implications in chiral homogeneity of biomolecules. Chirality 18:469–478. doi: 10.1002/chir.20289

    Article  CAS  Google Scholar 

  4. Soai K, Kawasaki T (2008) Asymmetric autocatalysis with amplification of chirality. Top Curr Chem 284:1–33. doi:10.1007/128_2007_138

    Article  CAS  Google Scholar 

  5. Kawasaki T, Soai K (2010) Amplification of chirality as a pathway to biological homochirality. J Fluor Chem 131:525–534. doi: 10.1016/j.jfluchem.2009.12.014

    Article  CAS  Google Scholar 

  6. Bolm C, Bienewald F, Seger A (1996) Asymmetric autocatalysis with amplification of chirality. Angew Chem Int Ed Engl 35:1657–1659. doi:10.1002/anie.199616571

    Article  CAS  Google Scholar 

  7. Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci USA 101:5732–5736

    Article  CAS  Google Scholar 

  8. Podlech J, Gehring T (2005) New aspects of Soai’s asymmetric autocatalysis. Angew Chem Int Ed 44:5776–5777. doi:10.1002/anie.200501742

    Article  CAS  Google Scholar 

  9. Caglioti L, Zucchi C, Pályi G (2005) Single-molecule chirality. Chim Oggi 23:38–39, 42–43

    CAS  Google Scholar 

  10. Gehring T, Busch M, Schlageter M, Weingand D (2010) A concise summary of experimental facts about the Soai reaction. Chirality 22(1E):E173–E182. doi:10.1002/chir.20849

    Article  CAS  Google Scholar 

  11. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768. doi:10.1038/378767a0

    Article  CAS  Google Scholar 

  12. Sato I, Urabe H, Ishiguro S, Shibata T, Soai K (2003) Amplification of chirality from extremely low to greater than 99.5% ee by asymmetric autocatalysis. Angew Chem Int Ed 42:315–317. doi:10.1002/anie.200390105

    Article  CAS  Google Scholar 

  13. Shibata T, Yonekubo S, Soai K (1999) Practically perfect asymmetric autocatalysis using 2-alkynyl-5-pyrimidylalkanol. Angew Chem Int Ed 38:659–661. doi:10.1002/(SICI)1521-3773(19990301)38:5%3C659::AID-ANIE659%3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  14. Mukaiyama T, Soai K, Sato T, Shimizu H, Suzuki K (1979) Enantioface-differentiating (asymmetric) addition of alkyllithium and dialkylmagnesium to aldehydes by using (2S, 2′S)-2-hydroxymethyl-1-[(1-alkylpyrrolidin-2-yl)methyl]pyrrolidines as chiral ligands. J Am Chem Soc 101:1455–1460. doi:10.1021/ja00500a015

    Article  CAS  Google Scholar 

  15. Oguni N, Omi T (1984) Enantioselective addition of diethylzinc to benzaldehyde catalyzed by a small amount of chiral 2-amino-1-alcohols. Tetrahedron Lett 25:2823–2824. doi:10.1016/S0040-4039(01)81300-9

    Article  CAS  Google Scholar 

  16. Soai K, Ookawa A, Ogawa K, Kaba T, Ogawa K (1987) Catalytic asymmetric induction. Highly enantioselective addition of dialkylzincs to aldehydes using chiral pyrrolidinylmethanols and their metal salts. J Am Chem Soc 109:7111–7115. doi:10.1021/ja00257a034

    Article  CAS  Google Scholar 

  17. Soai K, Yokoyama S, Ebihara K, Hayasaka T (1987) A new chiral catalyst for the highly enantioselective addition of dialkylzinc reagents to aliphatic aldehydes. J Chem Soc Chem Commun 1690–1691. doi:10.1039/c39870001690

  18. Kitamura M, Suga S, Kawai K, Noyori R (1986) Catalytic asymmetric induction. Highly enantioselective addition of dialkylzincs to aldehydes. J Am Chem Soc 108:6071–6072. doi:10.1021/ja00279a083

    Article  CAS  Google Scholar 

  19. Soai K, Ookawa A, Ogawa K, Kaba T (1987) Complementary catalytic asymmetric induction in the enantioselective addition of diethylzinc to aldehydes. J Chem Soc Chem Commun 467–468. doi:10.1039/c39870000467

  20. Soai K, Niwa S (1992) Enantioselective addition of organozinc reagents to aldehydes. Chem Rev 92:833–856. doi:10.1021/cr00013a004

    Article  CAS  Google Scholar 

  21. Soai K, Hori H, Niwa S (1989) Enantioselective addition of dialkylzincs to pyridinecarbaldehyde in the presence of chiral aminoalcohols: asymmetric synthesis of pyridylalkyl alcohols. Heterocycles 29:2065–2067

    Article  CAS  Google Scholar 

  22. Wynberg H (1989) Asymmetric autocatalysis: facts and fancy. J Macromol Sci Chem A26:1033–1041

    CAS  Google Scholar 

  23. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463. doi:10.1016/0006-3002(53)90082-1

    Article  CAS  Google Scholar 

  24. Soai K, Niwa S, Hori H (1990) Asymmetric self-catalytic reaction. Self-production of chiral 1-(3-pyridyl)alkanols as chiral self-catalysts in the enantioselective addition of dialkylzinc reagents to pyridine-3-carbaldehyde. J Chem Soc Chem Commun 982–983. doi:10.1039/C39900000982

  25. Soai K, Hayase T, Shimada C, Isobe K (1994) Catalytic asymmetric synthesis of chiral diol, bis[2-(1-hydroxyalkyl)phenyl]ether, an asymmetric autocatalytic reaction. Tetrahedron Asymmetry 5:789–792

    Article  CAS  Google Scholar 

  26. Soai K, Hayase T, Takai K (1995) Catalytic chirally self-replicating molecule. Asymmetric autocatalytic reaction of a zinc alkoxide of chiral 1-ferrocenyl-2-methylpropan-1-ol. Tetrahedron Asymmetry 6:637–638

    Article  CAS  Google Scholar 

  27. Shibata T, Choji K, Morioka H, Hayase T, Soai K (1996) Highly enantioselective synthesis of a chiral 3-quinolyl alkanol by an asymmetric autocatalytic reaction. Chem Commun 751–752. doi:10.1039/CC9960000751

  28. Shibata T, Morioka H, Tanji S, Hayase T, Kodaka Y, Soai K (1996) Enantioselective synthesis of chiral 5-carbamoyl-3-pyridyl alcohols by asymmetric autocatalytic reaction. Tetrahedron Lett 37:8783–8786. doi:10.1016/S0040-4039(96)02031-X

    Article  CAS  Google Scholar 

  29. Mislow K (2003) Absolute asymmetric synthesis: a commentary. Collect Czech Chem Commun 68:849–864. doi:10.1135/cccc20030849

    Article  CAS  Google Scholar 

  30. Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124. doi:10.1126/science.284.5423.2118

    Article  CAS  Google Scholar 

  31. Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 38:3419–3438. doi:10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V

    Article  CAS  Google Scholar 

  32. Weissbuch I, Lahav M (2011) Crystalline architectures as templates of relevance to the origins of homochirality. Chem Rev 111:3236–3267. doi:10.1021/cr1002479

    Article  CAS  Google Scholar 

  33. Girard C, Kagan HB (1998) Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew Chem Int Ed 37:2923–2959. doi:10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1

    Article  CAS  Google Scholar 

  34. Nishino H, Kosaka A, Hembury GA, Aoki F, Miyauchi K, Shitomi H, Onuki H, Inoue Y (2002) Absolute asymmetric photoreactions of aliphatic amino acids by circularly polarized synchrotron radiation: critically pH-dependent photobehavior. J Am Chem Soc 124:11618–11627. doi:10.1021/ja025959w

    Article  CAS  Google Scholar 

  35. Kagan H, Moradpour A, Nicoud JF, Balavoine G, Tsoucaris G (1971) Photochemistry with circularly polarized light. Synthesis of optically active hexahelicene. J Am Chem Soc 93:2353–2354. doi:10.1021/ja00738a061

    Article  CAS  Google Scholar 

  36. Kawasaki T, Sato M, Ishiguro S, Saito T, Morishita Y, Sato I, Nishino H, Inoue Y, Soai K (2005) Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. J Am Chem Soc 127:3274–3275. doi:10.1021/ja0422108

    Article  CAS  Google Scholar 

  37. Hazen R, Sholl M, David S (2003) Chiral selection on inorganic crystalline surfaces. Nat Mater 2:367–374. doi:10.1038/nmat879

    Article  CAS  Google Scholar 

  38. Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) d- and l-quartz-promoted highly enantioselective synthesis of a chiral compound. J Am Chem Soc 121:11235–11236. doi:10.1021/ja993128t

    Article  CAS  Google Scholar 

  39. Green BS, Lahav M, Rabinovich D (1979) Asymmetric synthesis via reactions in chiral crystals. Acc Chem Res 12:191–197. doi:10.1021/ar50138a001

    Article  CAS  Google Scholar 

  40. Kawasaki T, Jo K, Igarashi H, Sato I, Nagano M, Koshima H, Soai K (2005) Asymmetric amplification using chiral cocrystals formed from achiral organic molecules by asymmetric autocatalysis. Angew Chem Int Ed 44:2774–2777. doi:10.1002/anie.200462963

    Article  CAS  Google Scholar 

  41. Kawasaki T, Suzuki K, Hakoda Y, Soai K (2008) Achiral nucleobase cytosine acts as an origin of homochirality of biomolecules in conjunction with asymmetric autocatalysis. Angew Chem Int Ed 47:496–499. doi:10.1002/anie.200703634

    Article  CAS  Google Scholar 

  42. Kawasaki T, Suzuki K, Hatase K, Otsuka M, Koshima H, Soai K (2006) Enantioselective synthesis mediated by chiral crystal of achiral hippuric acid in conjunction with asymmetric autocatalysis. Chem Commun 1869–1871. doi:10.1039/b602442d

  43. Kawasaki T, Harada Y, Suzuki K, Tobita T, Florini N, Palyi G, Soai K (2008) Enantioselective synthesis utilizing enantiomorphous organic crystal of achiral benzils as a source of chirality in asymmetric autocatalysis. Org Lett 10:4085–4088. doi:10.1021/ol801600y

    Article  CAS  Google Scholar 

  44. Kawasaki T, Nakaoda M, Kaito N, Sasagawa T, Soai K (2010) Asymmetric autocatalysis induced by chiral crystals of achiral tetraphenylethylenes. Orig Life Evol Biosph 40:65–78. doi:10.1007/s11084-009-9183-4

    Article  CAS  Google Scholar 

  45. Kawasaki T, Hakoda Y, Mineki H, Suzuki K, Soai K (2010) Generation of absolute controlled crystal chirality by the removal of crystal water from achiral crystal of nucleobase cytosine. J Am Chem Soc 132:2874–2875. doi:10.1021/ja1000938

    Article  CAS  Google Scholar 

  46. Barabas B, Toth J, Palyi G (2010) Stochastic aspects of asymmetric autocatalysis and absolute asymmetric synthesis. J Math Chem 48:457–489. doi:10.1007/s10910-010-9680-8

    Article  CAS  Google Scholar 

  47. Barabas B, Caglioti L, Micskei K, Palyi G (2009) Data-based stochastic approach to absolute asymmetric synthesis by autocatalysis. Bull Chem Soc Jpn 82:1372–1376. doi:10.1246/bcsj.82.1372

    Article  CAS  Google Scholar 

  48. Mills WH (1932) Some aspects of stereochemistry. Chem Ind 51:750–759

    Article  CAS  Google Scholar 

  49. Soai K, Shibata T, Kobata Y (1997) (Japan Kokai Tokkyo Koho) JP 1997 9-268179. Application date: February 1 and April 18, 1996. An abstract of JP9-268179 is readily available from the European Patent Office (http://ep.espacenet.com) and, as JP-09268179 A, from Derwent World Patent Index, update No. 51 of 1997 (accession no. 1997-554699)

  50. Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis. Tetrahedron Asymmetry 14:185–188. doi:10.1016/S0957-4166(02)00791-7

    Article  CAS  Google Scholar 

  51. Kawasaki T, Shimizu M, Nishiyama D, Ito M, Ozawa H, Soai K (2009) Asymmetric autocatalysis induced by meteoritic amino acids with hydrogen isotope chirality. Chem Commun 4396–4398. doi:10.1039/b908754k

  52. Sato I, Omiya D, Saito T, Soai K (2000) Highly enantioselective synthesis induced by chiral primary alcohols due to deuterium substitution. J Am Chem Soc 122:11739–11740. doi:10.1021/ja002992e

    Article  CAS  Google Scholar 

  53. Kawasaki T, Ozawa H, Ito M, Soai K (2011) Enantioselective synthesis induced by compounds with chirality arising from partially deuterated methyl groups in conjunction with asymmetric autocatalysis. Chem Lett 40:320–321. doi:10.1246/cl.2011.320

    Article  CAS  Google Scholar 

  54. Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M, Soaki K (2009) Asymmetric autocatalysis triggered by carbon isotope (13C/12C) chirality. Science 324:492–495. doi:10.1126/science.1170322

    Article  CAS  Google Scholar 

  55. Kawasaki T, Wakushima Y, Asahina M, Shiozawa K, Kinoshita T, Lutz F, Soai K (2011) Reversal phenomenon of enantioface selectivity by the cooperative operation of two chiral catalysts. Chem Commun 47:5277–5279. doi:10.1039/C1CC10136F

    Article  CAS  Google Scholar 

  56. Lutz F, Igarashi T, Kawasaki T, Soai K (2005) Small amounts of achiral β-amino alcohols reverse the enantioselectivity of chiral catalysts in cooperative asymmetric autocatalysis. J Am Chem Soc 127:12206–12207. doi:10.1021/ja054323c

    Article  CAS  Google Scholar 

  57. Lutz F, Igarashi T, Kinoshita T, Asahina M, Tsukiyama K, Kawasaki T, Soai K (2008) Mechanistic insights in the reversal of enantioselectivity of chiral catalysts by achiral catalysts in asymmetric autocatalysis. J Am Chem Soc 130:2956–2958. doi:10.1021/ja077156k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenso Soai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soai, K., Kawasaki, T. (2012). Asymmetric Autocatalysis of Pyrimidyl Alkanol. In: Gooßen, L. (eds) Inventing Reactions. Topics in Organometallic Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2012_48

Download citation

Publish with us

Policies and ethics