Designing Molecular Catalysts for Selective CH Functionalization

  • Steven M. Bischof
  • Brian G. Hashiguchi
  • Michael M. Konnick
  • Roy A. PerianaEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 44)


The design of molecular catalysts for the selective hydroxylation of hydrocarbons is an important challenge. Designing systems that couple the CH activation reaction with oxy-functionalization of the resulting M–R intermediates has emerged as a promising strategy to meeting this goal. A large number of well-defined CH activation systems have been reported, but relatively few have been utilized as efficient hydroxylation catalysts. The primary reason for this observation is that most efficient CH activation catalysts are incompatible with the conditions required for oxy-functionalization of M–R. Significantly, the reported systems for CH hydroxylation suffer from a combination of challenges related to product protection, poor reaction selectivity, low catalytic activity, stability, and/or expensive product separation which have prevented further development. The design of next generation systems that are more active for both the CH activation and M–R functionalization steps will be directly dependent on improving reaction selectivity and stability of the catalyst systems. Herein, we outline the requirements for meeting these goals in regard to developing new oxy-functionalization catalysts and describe our efforts in this area.


CH activation CH functionalization Functionalization Hydrocarbons Hydroxylation Oxidation 



Ligated metal complex


Base- or acid-modulated catalysis










Density functional theory


Electron-donating group


Electron-withdrawing group


Protic ligand


Highest unoccupied molecular orbital






Lowest unoccupied molecular orbital






2-Electron acceptor oxidant


Protecting group




Room temperature


Turnover frequency


Turnover number


Transalkyl reductive functionalization


Transition state


Leaving group (e.g., halide, triflate, sulfate)


O-atom transfer oxidant



We gratefully acknowledge financial support of our research by the Chevron Corporation for R.A.P. and The Center for Catalytic Hydrocarbon Functionalization, a DOE Energy Frontier Research Center (DOE DE-SC000-1298) for S.M.B., B.G.H., and M.M.K.


  1. 1.
    Olah GA, Molnar A (2003) Hydrocarbon chemistry, 2nd edn. Wiley InterscienceGoogle Scholar
  2. 2.
    Olah GA, Goeppert A, Prakash GKS (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinhemGoogle Scholar
  3. 3.
    Wolf EE (ed) (1992) Methane conversion by oxidative processes. Van Nostrand Reinhold, New YorkGoogle Scholar
  4. 4.
    Periana RA (2001) C E News 79:287Google Scholar
  5. 5.
    Curry-Hyde HE, Howe RF Howe (eds) (1994) Natural gas conversion, 2nd edn. Elsevier, New YorkGoogle Scholar
  6. 6.
    Derouane EG, Haber J, Lemos F, Ribeiro FR, Guisnet M (eds) (1997) Catalytic activation and functionalization of light alkanes. In: Advances and challenges. Nato ASI Series, Kluwer Academic, DordrechtGoogle Scholar
  7. 7.
    Brooks BT, Dunstan AE (eds) (1953) The science of petroleum: synthetic products of petroleum. Oxford University Press, LondonGoogle Scholar
  8. 8.
    Voge HH (1948) J Chem Phys 16:984CrossRefGoogle Scholar
  9. 9.
    Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255CrossRefGoogle Scholar
  10. 10.
    Glockler G (1926) J Am Chem Soc 48:2021CrossRefGoogle Scholar
  11. 11.
    Lide D (ed) (2008) CRC handbook, 88th edn. Taylor and Francis Group, New YorkGoogle Scholar
  12. 12.
    Reamer HH, Sage BH, Lacey WN (1952) Ind Eng Chem 44:609CrossRefGoogle Scholar
  13. 13.
    Dhima A, de Hemptinne J-C, Jose J (1999) Ind Eng Chem Res 38:3144CrossRefGoogle Scholar
  14. 14.
    Dhima A, de Hemptinne J-C, Moracchini G (1998) Fluid Phase Equilib 145:129CrossRefGoogle Scholar
  15. 15.
    Clever HL (1987) Solubility Data Series 27:56Google Scholar
  16. 16.
    Lide, DR (ed) (2007–2008) CRC Handbook of Chemistry and Physics 88th edn. CRC Press Taylor & Francis, Boca RatonGoogle Scholar
  17. 17.
    Bordwell FG (1988) Acc Chem Res 21:456CrossRefGoogle Scholar
  18. 18.
    Naito S (2000) Catal Surv Japan 4:3CrossRefGoogle Scholar
  19. 19.
    Lunsford JH (1995) Angew Chem Int Ed 34:970Google Scholar
  20. 20.
    Mleczko L, Baerns M (1995) Fuel Process Technol 42:217Google Scholar
  21. 21.
    Janowicz AH, Bergman RG (1982) J Am Chem Soc 104:352CrossRefGoogle Scholar
  22. 22.
    Goddard RJ, Hoffmann R, Jemmis ED (1980) J Am Chem Soc 102:7667CrossRefGoogle Scholar
  23. 23.
    Saillard J-Y, Hoffmann R (1984) J Am Chem Soc 106:2006CrossRefGoogle Scholar
  24. 24.
    Rabaii H, Saillard J-Y, Hoffmann R (1986) J Am Chem Soc 108:4327CrossRefGoogle Scholar
  25. 25.
    Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28:154CrossRefGoogle Scholar
  26. 26.
    Hashiguchi BG, Bischof SM, Konnick MM, Periana RA (2012) Acc Chem Res 45:885Google Scholar
  27. 27.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879CrossRefGoogle Scholar
  28. 28.
    Periana RA, Bhalla G, Tenn WJ III, Young KJH, Liu XY, Mironov O, Jones CJ, Ziatdinov VR (2004) J Mol Catal A Chem 220:7CrossRefGoogle Scholar
  29. 29.
    Crabtree RH (2004) J Org Chem 689:4083CrossRefGoogle Scholar
  30. 30.
    Lersch M, Tilset M (2005) Chem Rev 105:2471CrossRefGoogle Scholar
  31. 31.
    Conley BL, Tenn WJ III, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J, Goddard WA III, Periana RA (2006) J Mol Catal A Chem 251:8CrossRefGoogle Scholar
  32. 32.
    Periana RA, Bergman RG (1986) J Am Chem Soc 108:7332CrossRefGoogle Scholar
  33. 33.
    Periana RA, Bergman RG (1986) J Am Chem Soc 108:7346CrossRefGoogle Scholar
  34. 34.
    Periana RA, Bergman RG (1984) J Am Chem Soc 106:7272CrossRefGoogle Scholar
  35. 35.
    Schaller CP, Cummins CC, Wolczanski PT (1996) J Am Chem Soc 118:591CrossRefGoogle Scholar
  36. 36.
    Bennett JL, Wolczanski PT (1997) J Am Chem Soc 119:10696CrossRefGoogle Scholar
  37. 37.
    Lin M, Shen C, Garcia-Zayas EA, Sen A (2001) J Am Chem Soc 123:1000CrossRefGoogle Scholar
  38. 38.
    Gol'dschleger NF, Es'kova VV, Shilov AE, Shteinman AA (1972) Russ J Phys Chem 46:785Google Scholar
  39. 39.
    Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560CrossRefGoogle Scholar
  40. 40.
    Periana RA, Taube DJ, Evitt ER, Löffler DG, Wentrcek PR, Voss G, Masuda T (1993) Science 259:340CrossRefGoogle Scholar
  41. 41.
    Gang X, Birch H, Zhu Y, Hjuler HA, Bjerrum NJ (2000) J Catal 196:287CrossRefGoogle Scholar
  42. 42.
    Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2003) Science 301:814CrossRefGoogle Scholar
  43. 43.
    Zerella M, Mukhopadhyay S, Bell AT (2004) Chem Commun 1948Google Scholar
  44. 44.
    Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA III (2004) Angew Chem Int Ed 43:4626Google Scholar
  45. 45.
    De Vos DE, Sels BF (2005) Angew Chem Int Ed 44:30Google Scholar
  46. 46.
    Tenn WJ III, Young KJH, Bhalla G, Oxgaard J, Goddard WA III, Periana RA (2005) J Am Chem Soc 127:14172CrossRefGoogle Scholar
  47. 47.
    Tenn WJ III, Young KJH, Oxgaard J, Nielsen RJ, Goddard WA III, Periana RA (2006) Organometallics 25:5173CrossRefGoogle Scholar
  48. 48.
    Young KJH, Mironov OA, Periana RA (2007) Organometallics 26:2137CrossRefGoogle Scholar
  49. 49.
    Bischof SM, Ess DH, Meier SK, Oxgaard J, Bhalla G, Nielson RJ, Goddard WA III, Periana RA (2010) Organometallics 29:742CrossRefGoogle Scholar
  50. 50.
    Klei SR, Golden JT, Tilley D, Bergman RG (2002) J Am Chem Soc 124:2092CrossRefGoogle Scholar
  51. 51.
    Feng Y, Lail M, Barakat KA, Cundari TR, Gunnoe TB, Petersen JL (2002) J Am Chem Soc 127:14174CrossRefGoogle Scholar
  52. 52.
    Kloek SM, Heinekey DM, Goldberg KI (2007) Angew Chem Int Ed 46:4736Google Scholar
  53. 53.
    Cotton FA, Wilkinsin G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  54. 54.
    Wheatly AEH (2001) Chem Soc Rev 30:265CrossRefGoogle Scholar
  55. 55.
    Carpentier J-F (2010) Dalton Trans 39:37CrossRefGoogle Scholar
  56. 56.
    Conley BL, Ganesh SK, Gonzales JM, Tenn WJ III, Young KJH, Oxgaard J, Goddard WA III, Periana RA (2006) J Am Chem Soc 128:9018CrossRefGoogle Scholar
  57. 57.
    Conley BL, Ganesh SK, Gonzales JM, Ess DH, Nielsen RJ, Ziatdinov VR, Oxgaard J, Goddard WA III, Periana RA (2008) Angew Chem Int Ed 41:7849Google Scholar
  58. 58.
    Hashiguchi BG, Hövelmann CH, Bischof SM, Lokare KS, Leung CH, Periana RA (2010) In: Crabtree RH (ed) Energy production and storage. Wiley, New York, p 101Google Scholar
  59. 59.
    Smith MB, March (2007) March’s advanced organic chemistry, 6th edn. Wiley-Interscience, Hoboken, p 519Google Scholar
  60. 60.
    Baeyer A, Villiger A (1899) Chem Ber 32:3625CrossRefGoogle Scholar
  61. 61.
    Baeyer A, Villiger V (1900) Chem Ber 33:858CrossRefGoogle Scholar
  62. 62.
    Olah GS, Schlosberg RH (1968) J Am Chem Soc 90:2726CrossRefGoogle Scholar
  63. 63.
    Olah GA (2005) J Org Chem 70:2413CrossRefGoogle Scholar
  64. 64.
    Olah GA, Prakash GKS (1985) Superacids. Wiley, New YorkGoogle Scholar
  65. 65.
    Streitwieser A Jr, Taylor DR (1970) J Chem Soc Chem Commun 1248Google Scholar
  66. 66.
    Streitwieser A Jr, Boerth DW (1978) J Am Chem Soc 100:755CrossRefGoogle Scholar
  67. 67.
    Streitwieser A Jr, Scannon PJ, Niemeyer HM (1972) J Am Chem Soc 94:7936CrossRefGoogle Scholar
  68. 68.
    Handa H, Baba T, Ono Y (1998) J Chem Soc Faraday Trans 94:451CrossRefGoogle Scholar
  69. 69.
    Crabtree RH (2010) Science 330:455CrossRefGoogle Scholar
  70. 70.
    Crabtree RH (2011) New J Chem 35:18CrossRefGoogle Scholar
  71. 71.
    Das S, Incarvito CD, Crabtree RH, Brudvig GW (2006) Science 312:1941CrossRefGoogle Scholar
  72. 72.
    Lee DH, Kwon HJ, Patel PP, Liable-Sands LM, Rheingold AL, Crabtree RH (1999) Organometallics 18:1615CrossRefGoogle Scholar
  73. 73.
    Billig E, Williams R, Bernal I, Waters JH, Gray HB (1964) Inorg Chem 3:663CrossRefGoogle Scholar
  74. 74.
    Ward MD, McCleverty JA (2002) J Chem Soc Dalton Trans 275Google Scholar
  75. 75.
    Ringenberg MR, Kokatam SL, Heiden ZM, Rauchfuss TB (2008) J Am Chem Soc 130:788CrossRefGoogle Scholar
  76. 76.
    Miller AJM, Labinger JA, Bercaw JE (2010) J Am Chem Soc 132:3301CrossRefGoogle Scholar
  77. 77.
    Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Nat Chem 3:609CrossRefGoogle Scholar
  78. 78.
    Kohl SW, Weiner L, Schwartsburd L, Konstantinovoski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D (2009) Science 324:74CrossRefGoogle Scholar
  79. 79.
    Bart SC, Chlopek K, Bill E, Bouwkamp MW, Lobkovsky E, Neese F, Wieghardt K, Chirik PJ (2006) J Am Chem Soc 128:13901CrossRefGoogle Scholar
  80. 80.
    Gilbert TM, Hristov I, Ziegler T (2001) Organometallics 20:1183CrossRefGoogle Scholar
  81. 81.
    Hristov IH, Ziegler T (2003) Organometallics 22:1668CrossRefGoogle Scholar
  82. 82.
    Kua J, Xu X, Periana RA, Goddard WA III (2002) Organometallics 21:511CrossRefGoogle Scholar
  83. 83.
    Paul A, Musgrave CB (2007) Organometallics 26:793CrossRefGoogle Scholar
  84. 84.
    Xu X, Kua J, Periana RA, Goddard WA III (2003) Organometallics 22:2057CrossRefGoogle Scholar
  85. 85.
    Ahlquist M, Periana RA, Goddard WA III (2009) Chem Commun 2373Google Scholar
  86. 86.
    Ahlquist M, Nielsen RJ, Periana RA, Goddard WA III (2009) J Am Chem Soc 131:17110CrossRefGoogle Scholar
  87. 87.
    Saito S, Saito S, Ohwada T, Shudo K (1991) Chem Pharm Bull 39:2718CrossRefGoogle Scholar
  88. 88.
    Atkins PJ, Palling DJ, Poon NL, Hall CD (1982) J Chem Soc Perkin Trans II 1107Google Scholar
  89. 89.
    Paul MA, Long FA (1957) Chem Rev 57:1CrossRefGoogle Scholar
  90. 90.
    O’Connor CJ (1969) J Chem Ed 46:686CrossRefGoogle Scholar
  91. 91.
    Matsumoto T, Taube DJ, Periana RA, Taube H, Yoshida H (2000) J Am Chem Soc 122:7414CrossRefGoogle Scholar
  92. 92.
    Bhalla G, Liu XY, Oxgaard J, Goddard WA III, Periana RA (2005) J Am Chem Soc 127:11372CrossRefGoogle Scholar
  93. 93.
    Jones WD, Maguire JA (1986) Organometallics 5:590CrossRefGoogle Scholar
  94. 94.
    Giannotti C, Green MLH (1972) J Chem Soc Chem Commun 1115Google Scholar
  95. 95.
    Harper TGP, Shinomoto RS, Deming MA, Flood TC (1988) J Am Chem Soc 110:7915CrossRefGoogle Scholar
  96. 96.
    Klei SR, Tilley D, Bergman RG (2002) Organometallics 21:4905CrossRefGoogle Scholar
  97. 97.
    Feng Y, Lail M, Barakat K, Cundari T, Gunnoe TB, Peterson JL (2005) J Am Chem Soc 127:14174CrossRefGoogle Scholar
  98. 98.
    Leung CW, Zheng W, Wang D, Ng SM, Yeung CH, Zhou Z, Lin Z, Lau CP (2007) Organometallics 26:1924CrossRefGoogle Scholar
  99. 99.
    Tenn WJ III, Young KJH, Oxgaard J, Nielsen RJ, Goddard WA III, Periana RA (2006) Organometallics 25:173CrossRefGoogle Scholar
  100. 100.
    Meier SK, Young KJH, Ess DH, Tenn WJ III, Oxgaard J, Goddard WA III, Periana RA (2009) Organometallics 28:5293CrossRefGoogle Scholar
  101. 101.
    Prechtl MHG, Hoelscher M, Ben-David Y, Theyssen N, Loshcen R, Milstein D, Leitner W (2007) Angew Chem Int Ed 46:2269Google Scholar
  102. 102.
    Gutierrez-Puebla E, Monge A, Paneque M, Poveda ML, Taboada S, Trujillo M, Carmona E (1999) J Am Chem Soc 121:346CrossRefGoogle Scholar
  103. 103.
    Ess DH, Goddard WA III, Periana RA (2010) Organometallics 29:6459CrossRefGoogle Scholar
  104. 104.
    Ess DH, Nielsen RJ, Goddard WA III, Periana RA (2009) J Am Chem Soc 131:11686CrossRefGoogle Scholar
  105. 105.
    Wax MJ, Stryker JM, Buchanan JM, Kovac CA, Bergman RG (1984) J Am Chem Soc 106:1121CrossRefGoogle Scholar
  106. 106.
    Mobley TA, Schade C, Bergman RG (1998) Organometallics 17:3574CrossRefGoogle Scholar
  107. 107.
    Hoyano JK, Graham WAG (1982) J Am Chem Soc 104:3723CrossRefGoogle Scholar
  108. 108.
    Hoyano JK, McMaster AD, Graham WAG (1983) J Am Chem Soc 105:7190CrossRefGoogle Scholar
  109. 109.
    Wenzel TT, Bergman RG (1986) J Am Chem Soc 108:4856CrossRefGoogle Scholar
  110. 110.
    Leung DH, Bergman RG, Raymond KN (2006) J Am Chem Soc 128:9781CrossRefGoogle Scholar
  111. 111.
    Young GB, Whitesides GM (1978) J Am Chem Soc 100:5808CrossRefGoogle Scholar
  112. 112.
    Desrosiers PJ, Shinomoto RS, Flood TC (1986) J Am Chem Soc 108:7964CrossRefGoogle Scholar
  113. 113.
    Jensen MP, Wick DD, Reinartz S, White PS, Templeton JL, Goldberg KI (2003) J Am Chem Soc 125:8614Google Scholar
  114. 114.
    Ng SM, Lam WH, Mak CC, Tsang CW, Jia G, Lin Z, Lau CP (2003) Organometallics 22:641CrossRefGoogle Scholar
  115. 115.
    Holtcamp MW, Labinger JA, Bercaw JE (1997) J Am Chem Soc 119:848CrossRefGoogle Scholar
  116. 116.
    Luinstra GA, Wang L, Stahl SS, Labinger JA, Bercaw JE (1995) J Organomet Chem 504:75CrossRefGoogle Scholar
  117. 117.
    Abu-Omar MM, Hansen PJ, Espenson JH (1996) J Am Chem Soc 118:4966CrossRefGoogle Scholar
  118. 118.
    Gonzales JM, Distaiso R Jr, Periana RA, Goddard WA III, Oxgaard J (2007) J Am Chem Soc 129:15794CrossRefGoogle Scholar
  119. 119.
    Bischof SM, Cheng M-J, Nielsen RJ, Gunnoe TB, Goddard WA III, Periana RA (2011) Organometallics 3:2079CrossRefGoogle Scholar
  120. 120.
    Schmidt SP, Trogler WC, Basolo F (2007) Inorg Synth 28:160CrossRefGoogle Scholar
  121. 121.
    Waitkins GR, Clark CW (1945) Chem Rev 36:235CrossRefGoogle Scholar
  122. 122.
    Sharpless KB, Gordon KM (1976) J Am Chem Soc 98:300CrossRefGoogle Scholar
  123. 123.
    Corey EJ, Schaefer JP (1960) J Am Chem Soc 82:918Google Scholar
  124. 124.
    Nicolaou KC, Petasis NA (1984) Selenium in natural products synthesis. CIS, PhiladelphiaGoogle Scholar
  125. 125.
    Sharpless KB, Lauer RF (1972) J Am Chem Soc 94:7154CrossRefGoogle Scholar
  126. 126.
    Umbreit MA, Sharpless KB (1977) J Am Chem Soc 99:5526CrossRefGoogle Scholar
  127. 127.
    Patel BM, Price GL (1990) Ind Eng Chem Res 29:730CrossRefGoogle Scholar
  128. 128.
    Mann RS, Lao KC (1967) Ind Eng Chem Res 6:263CrossRefGoogle Scholar
  129. 129.
    Bird L, Challenger F (1942) J Chem Soc 570Google Scholar
  130. 130.
    Tenn WJ III, Conley BL, Hövelmann CH, Ahlquist M, Nielsen RJ, Ess DH, Oxgaard J, Bischof SM, Goddard WA III, Periana RA (2009) J Am Chem Soc 131:2466Google Scholar
  131. 131.
    Basolo F (1968) Pure Appl Chem 17:37CrossRefGoogle Scholar
  132. 132.
    Jackson WG (2002) Inorg React Mech 4:1CrossRefGoogle Scholar
  133. 133.
    Bianchini C, Meli A, Vizza F (2004) J Organomet Chem 689:4277CrossRefGoogle Scholar
  134. 134.
    Longato B, Pilloni G, Valle G, Corain B (1988) Inorg Chem 27:956CrossRefGoogle Scholar
  135. 135.
    Kiyooka S, Matsumoto S, Kojima M, Sakonaka K, Maeda H (2008) Tetrahedron Lett 49:1589CrossRefGoogle Scholar
  136. 136.
    Tsukada N, Murata K, Inoue Y (2005) Tetrahedron Lett 46:7515CrossRefGoogle Scholar
  137. 137.
    Bercaw JE, Hazari N, Labinger JA, Oblad PF (2008) Angew Chem Int Ed 47:9941Google Scholar
  138. 138.
    Williams TJ, Caffyn AJM, Hizari N, Oblad PF, Labinger JA, Bercaw JE (2008) J Am Chem Soc 130:2418CrossRefGoogle Scholar
  139. 139.
    Kuiper JL, Shapley PA (2007) J Organomet Chem 692:1653CrossRefGoogle Scholar
  140. 140.
    Hashiguchi BG, Young KJH, Yousufuddin M, Goddard WA III, Periana RA (2010) J Am Chem Soc 132:12542CrossRefGoogle Scholar
  141. 141.
    Rochester CH (1966) Q Rev Chem Soc 20:511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Steven M. Bischof
    • 1
  • Brian G. Hashiguchi
    • 1
  • Michael M. Konnick
    • 1
  • Roy A. Periana
    • 1
    Email author
  1. 1.Department of Chemistry, The Scripps Energy & Materials CenterThe Scripps Research InstituteJupiterUSA

Personalised recommendations