Skip to main content

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 38))

Abstract

The present chapter introduces the basic fundaments of the palladium-catalyzed allylic substitution reaction. After a brief introduction, the reaction is explored into the different steps of the catalytic cycle in a chronological order. Formation of the crucial η 3-allyl palladium complexes is first commented, followed by a brief description of the static isomerism and dynamic features related to these compounds. Synthetic opportunities to intercept these complexes are then presented. Selectivity is then addressed with a first focus on regioselectivity and memory effects. Finally, selected examples of enantioselective versions are presented and classified according to the position of the enantiodiscriminating step in the catalytic cycle.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, brackets around palladium atom in the notation of a generic (charged or neutral) allyl complex intend to render implicit the dative ligands. An asterisk next to the brackets indicates the presence of a chiral (usually enantiopure) ligand.

  2. 2.

    As we will see later, this π-allyl palladium(II) complex can be also generated via interaction between an alkene and a PdX2 complex.

  3. 3.

    Metal-catalyzed allylic alkylation to afford branched products can be obtained using transition metals other than palladium. However, this topic is beyond the scope of the present chapter.

References

  1. Tsuji J et al (1965) Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Lett 6:4387–4388

    Google Scholar 

  2. Atkins KE et al (1970) Palladium catalyzed transfer of allylic groups. Tetrahedron Lett 11:3821–3824

    Google Scholar 

  3. Hata G et al (1970) Palladium-catalyzed exchange of allylic groups of ethers and esters with active-hydrogen compounds. J Chem Soc D, Chem Commun 1392–1393

    Google Scholar 

  4. Trost BM, Strege PE (1977) Asymmetric induction in catalytic allylic alkylation. J Am Chem Soc 99:1649–1651

    CAS  Google Scholar 

  5. Trost BM, Lautens M (1982) Molybdenum catalysts for allylic alkylation. J Am Chem Soc 104:5543–5545

    CAS  Google Scholar 

  6. Trost BM, Hung MH (1983) Tungsten-catalyzed allylic alkylations. New avenues for selectivity. J Am Chem Soc 105:7757–7759

    CAS  Google Scholar 

  7. Takeuchi R, Kashio M (1997) Highly selective allylic alkylation with a carbon nucleophile at the more substituted allylic terminus catalyzed by an iridium complex: an efficient method for constructing quaternary carbon centers. Angew Chem Int Ed 36:263–265

    CAS  Google Scholar 

  8. Tsuji J et al (1984) Allylation of carbonucleophiles with allylic carbonates under neutral conditions catalyzed by rhodium complexes. Tetrahedron Lett 25:5157–5160

    CAS  Google Scholar 

  9. Zhang S et al (1993) Ruthenium complex-catalyzed allylic alkylation of carbonucleophiles with allylic carbonates. J Organomet Chem 450:197–207

    CAS  Google Scholar 

  10. Kurosawa H (1979) η-Allylmetal chemistry. Part 7. Allylic alkylation catalysed by platinum complexes. Isolation of rigid (σ-allyl)(pentane-2,4-dionato)platinum(II) complexes. J Chem Soc, Dalton Trans 939–943

    Google Scholar 

  11. Cuvigny T, Julia M (1983) Alkylations allyliques catalysees au nickel. J Organomet Chem 250:C21–C24

    CAS  Google Scholar 

  12. Consiglio G et al (1983) Nickel catalysed asymmetric coupling reaction between allyl phenyl ethers and Grignard reagents. J Chem Soc, Chem Commun 112–115

    Google Scholar 

  13. Fouquet G, Schlosser M (1974) Improved carbon-carbon linking by controlled copper catalysis. Angew Chem Int Ed 13:82–83

    Google Scholar 

  14. Roustan JL et al (1979) Reactions d’alkylation de chlorures, formate et acetates allyliques catalyses par des complexes du fer et du cobalt. Tetrahedron Lett 20:3721–3724

    Google Scholar 

  15. Auburn PR et al (1985) Asymmetric synthesis. Asymmetric catalytic allylation using palladium chiral phosphine complexes. J Am Chem Soc 107:2033–2046

    CAS  Google Scholar 

  16. Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921–2944

    CAS  Google Scholar 

  17. Trost BM (2004) Asymmetric allylic alkylation, an enabling methodology. J Org Chem 69:5813–5837

    CAS  Google Scholar 

  18. Trost BM (1996) Designing a receptor for molecular recognition in a catalytic synthetic reaction: allylic alkylation. Acc Chem Res 29:355–364

    CAS  Google Scholar 

  19. Pfaltz A, Lautens M (1999) Allylic substitution reactions. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer, Heidelberg

    Google Scholar 

  20. Evans LA et al (2008) Counterintuitive kinetics in Tsuji-Trost allylation: ion-pair partitioning and implications for asymmetric catalysis. J Am Chem Soc 130:14471–14473

    CAS  Google Scholar 

  21. Amatore C et al (2007) Palladium(0)-catalyzed allylic aminations: kinetics and mechanism of the reaction of secondary amines with cationic [(η3-allyl)PdL2]+ complexes. Organometallics 26:1875–1880

    CAS  Google Scholar 

  22. Brookhart M et al (1992) [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics 11:3920–3922

    CAS  Google Scholar 

  23. Trost BM, Verhoeven TR (1976) Allylic substitutions with retention of stereochemistry. J Org Chem 41:3215–3216

    CAS  Google Scholar 

  24. Matsushita H, Negishi E (1982) anti-Stereospecificity in the palladium-catalysed reactions of alkenyl- or aryl-metal derivatives with allylic electrophiles. J Chem Soc, Chem Commun 160–161

    Google Scholar 

  25. Yamamoto T et al (1981) Oxidative addition of allyl acetate to palladium(0) complexes. J Am Chem Soc 103:5600–5602

    CAS  Google Scholar 

  26. Amatore C et al (2005) Rate and mechanism of the reaction of (E)-PhCHCH-CH(Ph)-OAc with palladium(0) complexes in allylic substitutions. Organometallics 24:1569–1577

    CAS  Google Scholar 

  27. Amatore C et al (1999) Evidence of the reversible formation of cationic π-Allylpalladium(II) complexes in the oxidative addition of allylic acetates to palladium(0) complexes. Chem Eur J 5:466–473

    CAS  Google Scholar 

  28. Vitagliano A et al (1991) Convenient synthesis of cationic (η3-allyl)palladium complexes. Preparative and stereochemical aspects. Organometallics 10:2592–2599

    CAS  Google Scholar 

  29. Tsuji J et al (1982) Facile palladium catalyzed decarboxylative allylation of active methylene compounds under neutral conditions using allylic carbonates. Tetrahedron Lett 23:4809–4812

    CAS  Google Scholar 

  30. Tsuji J et al (1985) Allylic carbonates. Efficient allylating agents of carbonucleophiles in palladium-catalyzed reactions under neutral conditions. J Org Chem 50:1523–1529

    CAS  Google Scholar 

  31. Ozawa F et al (1992) Preparation and reactions of (π-allyl)palladium and - platinumcarbonate complexes. Organometallics 11:171–176

    CAS  Google Scholar 

  32. Amatore C et al (2000) Oxidative addition of allylic carbonates to palladium(0) complexes: reversibility and isomerization. Chem Eur J 6:3372–3376

    CAS  Google Scholar 

  33. Jeffrey PD, McCombie SW (1982) Homogeneous, palladium(0)-catalyzed exchange deprotection of allylic esters, carbonates and carbamates. J Org Chem 47:587–590

    CAS  Google Scholar 

  34. Tsuji J et al (1981) Regioselective 1,4-addition of nucleophiles to 1,3-diene monoepoxides catalyzed by palladium complex. Tetrahedron Lett 22:2575–2578

    CAS  Google Scholar 

  35. Trost BM, Molander GA (1981) Neutral alkylations via palladium(0) catalysis. J Am Chem Soc 103:5969–5972

    CAS  Google Scholar 

  36. Takahashi K et al (1972) Palladium-catalyzed exchange of allylic groups of ethers and esters with active hydrogen compounds. II. Bull Chem Soc Jpn 45:230–236

    CAS  Google Scholar 

  37. Trost BM, Keinan E (1979) An approach to primary allylic amines via transition-metal-catalyzed reactions. Total Synthesis of (+/−)-Gabaculine. J Org Chem 44:3451–3457

    CAS  Google Scholar 

  38. Trost BM et al (1980) Allyl sulfones as synthons for 1,1- and 1,3-dipoles via organopalladium chemistry. J Am Chem Soc 102:5979–5981

    CAS  Google Scholar 

  39. Hutchins RO, Learn K (1982) Regio- and stereoselective reductive replacement of allylic oxygen, sulfur, and selenium functional groups by hydride via catalytic activation by palladium(0) complexes. J Org Chem 47:4380–4382

    CAS  Google Scholar 

  40. Tanigawa Y et al (1982) Palladium(0)-catalyzed allylic alkylation and amination of allylic phosphates. Tetrahedron Lett 23:5549–5552

    CAS  Google Scholar 

  41. Tamura R, Hegedus LS (1982) Palladium(0)-catalyzed allylic alkylation and amination of allylnitroalkanes. J Am Chem Soc 104:3727–3729

    CAS  Google Scholar 

  42. One N et al (1982) Palladium-catalysed allylic alkylations of allylic nitro-compounds. J Chem Soc, Chem Commun 821–822

    Google Scholar 

  43. Sheffy FK, Stille JK (1983) Palladium-catalyzed cross-coupling of allyl halides with organotins. J Am Chem Soc 105:7173–7175

    CAS  Google Scholar 

  44. Paolobelli AB et al (1993) Palladium-catalyzed alkylation of allylic nitrates derived from ceric ammonium nitrate promoted oxidative addition of trimethylsilyloxy-cyclopropanes to 1,3-butadiene. Tetrahedron Lett 34:6333–6336

    CAS  Google Scholar 

  45. Muzart J (2005) Palladium-catalysed reactions of alcohols. Part B: formation of C-C and C-N bonds from unsaturated alcohols. Tetrahedron 61:4179–4212

    CAS  Google Scholar 

  46. Muzart J (2007) Procedures for and possible mechanisms of Pd-catalyzed allylations of primary and secondary amines with allylic alcohols. Eur J Org Chem 3077–3089

    Google Scholar 

  47. Imada Y et al (2002) Palladium-catalyzed asymmetric alkylation of 2,3-alkadienyl phosphates. Synthesis of optically active 2-(2,3-alkadienyl)malonates. Chem Lett 31:140–141

    Google Scholar 

  48. Trost BM et al (2005) Dynamic kinetic asymmetric allylic alkylations of allenes. J Am Chem Soc 127:14186–14187

    CAS  Google Scholar 

  49. Roberts JS, Klabunde KJ (1977) The direct synthesis of η3-ArCH2PdCl compounds by the oxidative addition of ArCH2-chlorine bonds to palladium atoms. J Am Chem Soc 99:2509–2515

    CAS  Google Scholar 

  50. Legros J, Fiaud JC (1992) Palladium-catalyzed nucleophilic substitution of naphthylmethyl and 1-naphthylethyl esters. Tetrahedron Lett 33:2509–2510

    CAS  Google Scholar 

  51. Kuwano R et al (2003) Palladium-catalyzed nucleophilic benzylic substitutions of benzylic esters. J Am Chem Soc 125:12104–12105

    CAS  Google Scholar 

  52. Kuwano R (2009) Catalytic transformations of benzylic carboxylates and carbonates. Synthesis 1049–1061

    Google Scholar 

  53. Liegault B et al (2008) Activation and functionalization of benzylic derivatives by palladium catalysts. Chem Soc Rev 37:290–299

    CAS  Google Scholar 

  54. Stevens RR, Shier GD (1970) π-benzylbis(triethylphosphine) palladium(II) tetrafluoroborate. J Organomet Chem 21:495–499

    CAS  Google Scholar 

  55. Shimizu I, Tsuji J (1984) Palladium-catalyzed synthesis of 2,3-disubstituted allylamines by regioselective aminophenylation or aminoalkenylation of 1,2-dienes. Chem Lett 233–236

    Google Scholar 

  56. Ahmar M et al (1984) Synthese de dienes-1,3 et de styrenes fonctionnalises par carbopalladation catalytique d’allenes. Tetrahedron Lett 25:4505–4508

    CAS  Google Scholar 

  57. Ma S (2006) Transition-metal-catalyzed reactions of allenes. Pure Appl Chem 78:197–208

    CAS  Google Scholar 

  58. Patel BA et al (1978) Palladium-catalyzed arylation of conjugated dienes. J Org Chem 43:5018–5020

    CAS  Google Scholar 

  59. O’Connor JM et al (1983) Some aspects of palladium-catalyzed reactions of aryl and vinylic halides with conjugated dienes in the presence of mild nucleophiles. J Org Chem 48:807–809

    Google Scholar 

  60. Robinson SD, Shaw BL (1963) 919. Transition metal-carbon bonds. Part I. π-Allylic palladium complexes from butadiene and its methyl derivatives. J Chem Soc 4806–4814

    Google Scholar 

  61. Robinson SD, Shaw BL (1964) 961. Transition metal-carbon bonds. Part II. π -Allylic and related complexes from some cyclic 1,3-dienes. J Chem Soc 5002–5008

    Google Scholar 

  62. Bäckvall JE et al (1984) Stereo- and regioselective palladium-catalyzed 1,4-diacetoxylation of 1,3-dienes. J Org Chem 49:4619–4631

    Google Scholar 

  63. Bäckvall JE et al (1985) Stereo- and regioselective palladium-catalyzed 1,4-acetoxychlorination of 1,3-dienes. 1-Acetoxy-4-chloro-2-alkenes as versatile synthons in organic transformations. J Am Chem Soc 107:3676–3686

    Google Scholar 

  64. Lupin MS et al (1966) Transition metal-carbon bonds. Part VII. The formation of π-allylic-palladium complexes from allenes and palladium halides and the reversed reactions. J Chem Soc A 1687–1691

    Google Scholar 

  65. Bäckvall J, Jonasson C (1997) Palladium-catalyzed 1,2-oxidation of allenes. Tetrahedron Lett 38:291–294

    Google Scholar 

  66. Parshall GW, Wilkinson G (1962) Mesityl oxide complexes of palladium and platinum. Inorg Chem 1:896–900

    CAS  Google Scholar 

  67. Trost BM, Fullerton TJ (1973) New synthetic reactions. Allylic alkylation. J Am Chem Soc 95:292–294

    CAS  Google Scholar 

  68. Chen MS, White MC (2004) A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J Am Chem Soc 126:1346–1347

    CAS  Google Scholar 

  69. Young AJ, White MC (2008) Catalytic intermolecular allylic C-H alkylation. J Am Chem Soc 130:14090–14091

    CAS  Google Scholar 

  70. Lin S et al (2008) Intra/intermolecular direct allylic alkylation via Pd(II)-catalyzed allylic C-H activation. J Am Chem Soc 130:12901–12903

    CAS  Google Scholar 

  71. Jensen T, Fristrup P (2009) Toward efficient palladium-catalyzed allylic C-H alkylation. Chem Eur J 15:9632–9636

    CAS  Google Scholar 

  72. Jazzar R et al (2010) Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation. Chem Eur J 16:2654–2672

    CAS  Google Scholar 

  73. Vrieze K (1975) In: Jackman LM, Cotton FA (eds) Dynamic nuclear magnetic resonance spectroscopy. Academic, New York

    Google Scholar 

  74. Pregosin PS, Salzmann R (1996) Structure and dynamics of chiral allyl complexes of Pd(II): NMR spectroscopy and enantioselective allylic alkylation. Coord Chem Rev 155:35–68

    CAS  Google Scholar 

  75. Solin N, Szabó KJ (2001) Mechanism of the η 1 → η 3 → η 1 isomerization in allylpalladium complexes: solvent coordination, ligand and substituent effects. Organometallics 20:5464–5471

    CAS  Google Scholar 

  76. Pericàs MA et al (2002) Modular bis(oxazoline) ligands for palladium catalyzed allylic alkylation: unprecedented conformational behaviour of a bis(oxazoline) palladium η 3-1,3-diphenylallyl complex. Chem Eur J 8:4164–4178

    Google Scholar 

  77. Ogasawara M et al (2002) Effects of bidentate phosphine ligands on syn-anti isomerization in π–allylpalladium complexes. Organometallics 21:4853–4861

    CAS  Google Scholar 

  78. Faller JW, Wilt JC (2005) Regioselectivity in the palladium/(S)-BINAP(S)-catalyzed asymmetric allylic amination: reaction scope, kinetics and stereodynamics. Organometallics 24:5076–5083

    CAS  Google Scholar 

  79. Lloyd-Jones GC et al (2000) Diastereoisomeric cationic π-allylpalladium-(P, C)-MAP and MOP complexes and their relationship to stereochemical memory effects in allylic alkylation. Chem Eur J 6:4348–4357

    CAS  Google Scholar 

  80. Boele MDK et al (2004) Bulky monodentate phosphoramidites in palladium-catalyzed allylic alkylation reactions: aspects of regioselectivity and enantioselectivity. Chem Eur J 10:6232–6246

    CAS  Google Scholar 

  81. Camus J-M et al (2004) Allylpalladium(II) complexes with aminophosphane ligands: solution behaviour and X-ray structure of cis-[Pd(η 3-CH2CHCHPh){Ph2PCH2CHPhNH(2,6-C6H3 iPr2)}][PF6]. Eur J Inorg Chem 1081–1091

    Google Scholar 

  82. Kumar PGA et al (2005) Bonding in palladium(II) and platinum(II) allyl MeO- and H-MOP complexes. Subtle differences via 13C NMR. Organometallics 24:1306–1314

    CAS  Google Scholar 

  83. Kawatsura M et al (2000) Palladium-catalyzed asymmetric reduction of racemic allylic esters with formic acid: effects of phosphine ligands on isomerization of π–allylpalladium intermediates and enantioselectivity. Tetrahedron 56:2247–2257

    CAS  Google Scholar 

  84. Mandal SK et al (2003) Diastereoisomerism in palladium(II) allyl complexes of P, P-, P, S-, and S, S-donor ligands, Ph2P(E)N(R)P(E’)Ph2 [R = CHMe2 or (S)-*CHMePh; E = E4 = lone pair or S]: solution behaviour, X-ray crystal structure and catalytic allylic alkylation reactions. J Organomet Chem 676:22–37

    CAS  Google Scholar 

  85. Hayashi T et al (1986) Stereo- and regiochemistry in palladium-catalyzed nucleophilic substitution of optically active (E) and (Z)-allylic acetates. J Org Chem 51:723–727

    CAS  Google Scholar 

  86. Bäckvall JE et al (1991) On the mechanism of palladium(0)-catalyzed reactions of allylic substrates with nucleophiles. Origin for the loss of stereospecificity. Isr J Chem 31:17–24

    Google Scholar 

  87. Pedersen TM et al (2001) Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions. J Am Chem Soc 123:9738–9742

    CAS  Google Scholar 

  88. Strand D et al (2006) Divergence en route to nonclassical annonaceous acetogenins. Synthesis of pyranicin and pyragonicin. J Org Chem 71:1879–1891

    CAS  Google Scholar 

  89. Filipuzzi S et al (2008) Structure, bonding and dynamics of several palladium η 3-allyl carbene complexes. Organometallics 27:437–444

    CAS  Google Scholar 

  90. You S-L et al (2002) Role of planar chirality of S, N- and P, N ferrocene ligands in palladium-catalyzed allylic substitutions. J Org Chem 67:4684–4695

    CAS  Google Scholar 

  91. Faller JW et al (2001) Rearrangement in allylpalladium complexes with hemilabile chelating ligands. Helv Chim Acta 84:3031–3042

    CAS  Google Scholar 

  92. Guerrero A et al (2004) Apparent allylic rotation in new allylpalladium(II) complexes with pyrazolyl N-donor ligands. Eur J Inorg Chem 549–556

    Google Scholar 

  93. Jalón FA et al (2005) Apparent allyl rotation and Pd-N bond rupture in allylpalladium complexes with N-donor ligands – evidence of an associative mechanism. Eur J Inorg Chem 100–109

    Google Scholar 

  94. Montoya V et al (2007) New (η3-Allyl)palladium complexes with pyridylpyrazole ligands: synthesis, characterization, and study of the influence of N1 substituents on the apparent allyl rotation. Organometallics 26:3183–3190

    CAS  Google Scholar 

  95. Johansson C et al (2010) Memory and dynamics in Pd-catalyzed allylic alkylation with P, N-ligands. Tetrahedron: Asymmetry 21:1585–1592

    CAS  Google Scholar 

  96. Kollmar M et al (2001) (Phosphanyloxazoline)palladium complexes, part I: (η 3-1,3-dialkylallyl)(phosphanyloxazoline) palladium complexes: x-ray crystallographic studies, NMR investigations, and quantum-chemical calculations. Chem Eur J 7:4913–4927

    CAS  Google Scholar 

  97. Cho C-W et al (2006) Studies on the structure and equilibration of (π-allyl)palladium complexes of phosphino(oxazolinyl)ferrocene ligands. Tetrahedron: Asymmetry 17:2240–2246

    CAS  Google Scholar 

  98. Butts CP et al (2009) Structure-based rationale for selectivity in the asymmetric allylic alkylation of cycloalkenyl esters employing the Trost ‘Standard Ligand’ (TSL): isolation, analysis and alkylation of the monomeric form of the cationic η3-cyclohexenyl complex [(η3-c-C6H9)Pd(TSL)]+. J Am Chem Soc 131:9945–9957

    CAS  Google Scholar 

  99. Granberg KL, Bäckvall J-E (1992) Isomerization of (π-allyl)palladium complexes via nucleophilic displacement by palladium(0). A common mechanism in palladium(0)-catalyzed allylic substitution. J Am Chem Soc 114:6858–6863

    CAS  Google Scholar 

  100. Takahashi T et al (1984) Chirality transfer from C-O to C-C in the palladium catalyzed ScN‘ reaction of (E)- and (Z)-allylic carbonates with carbonucleophiles. Tetrahedron Lett 25:5921–5924

    CAS  Google Scholar 

  101. Lemaire S et al (2004) Pyrrolizidine alkaloids by intramolecular palladium-catalysed allylic alkylation: synthesis of (±)-isoretronecanol. Eur J Org Chem 2840–2847

    Google Scholar 

  102. Fiaud JC, Legros JY (1987) New method for the classification of nucleophiles in the palladium-catalyzed substitution of allylic acetates. J Org Chem 52:1907–1911

    CAS  Google Scholar 

  103. Trost BM, Verhoeven TR (1980) Allylic alkylation. Palladium-catalyzed substitutions of allylic carboxylates. Stereo- and regiochemistry. J Am Chem Soc 102:4730–4743

    CAS  Google Scholar 

  104. Trost BM, Verhoeven TR (1976) New synthetic reactions. Catalytic vs. stoichiometric allylic alkylation. Stereocontrolled approach to steroid side chain. J Am Chem Soc 98:630–632

    CAS  Google Scholar 

  105. Tsuji J et al (1980) Preparation of five- and six-membered cyclic ketones by the palladium-catalyzed cyclization reaction. Application to methyl dihydrojasmonate synthesis. Tetrahedron Lett 21:1475–1478

    CAS  Google Scholar 

  106. Giambastiani G, Poli G (1998) Palladium catalyzed alkylation with allylic acetates under neutral conditions. J Org Chem 63:9608–9609

    CAS  Google Scholar 

  107. Poli G et al (1999) Palladium-catalyzed allylic alkylations via titanated nucleophiles: a new early-late heterobimetallic system. J Org Chem 64:2962–2965

    CAS  Google Scholar 

  108. Trost BM, Murphy DJ (1985) A model for metal-templated catalytic asymmetric induction via π-allyl fragments. Organometallics 4:1143–1145

    CAS  Google Scholar 

  109. Trost BM, Matthew L, Crawley ML (2011) Enantioselective allylic substitutions in natural product synthesis. Top Organomet Chem doi:10.1007/3418_2011_13

  110. Michelet V et al (2002) Synthesis of natural products and biologically active compounds via allylpalladium and related derivatives. In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis, vol 2. Wiley, New York

    Google Scholar 

  111. Trost BM, Verhoeven TR (1977) Cyclizations via organopalladium intermediates. Macrolide formation. J Am Chem Soc 99:3867–3868

    CAS  Google Scholar 

  112. Bui The Thuong M et al (2007) New access to kainic acid via intramolecular palladium-catalyzed allylic alkylation. Synlett 1521–1524

    Google Scholar 

  113. Wade PA et al (1982) Palladium catalysis as a means for promoting the allylic C-alkylation of nitro compounds. J Org Chem 47:365–367

    CAS  Google Scholar 

  114. Braun M, Meier T (2006) New developments in stereoselective palladium-catalyzed allylic alkylations of preformed enolates. Synlett 661–676

    Google Scholar 

  115. Åkermark B, Jutand A (1981) Addition of ketone enolates to π-allylpalladium compounds. Stereochemistry and scope of the reaction. J Organomet Chem 217:C41–C43

    Google Scholar 

  116. Fiaud JC, Malleron JL (1981) Ketone enolates as nucleophiles in palladium-catalysed allylic alkylation. J Chem Soc, Chem Commun 1159–1160

    Google Scholar 

  117. Elliot MR et al (1998) Regio- and stereoselective palladium(0)-catalyzed alkylation of vinyloxiranes with non-stabilized lithium esters enolates nucleophiles. A direct access to highly functionalized allylic alcohols. Tetrahedron Lett 39:8849–8852

    Google Scholar 

  118. Braun M et al (2000) Diastereoselective and enantioselective palladium-catalyzed allylic substitution with nonstabilized ketone enolates. Angew Chem Int Ed 39:3494–3497

    CAS  Google Scholar 

  119. Negishi E et al (1982) Highly regio- and stereospecific palladium-catalyzed allylation of enolates derived from ketones. J Org Chem 47:3188–3190

    CAS  Google Scholar 

  120. Negishi E, John RA (1983) Countercation effects on the palladium-catalyzed allylation of enolates. J Org Chem 48:4098–4102

    CAS  Google Scholar 

  121. Trost BM, Keinan E (1980) Enolstannanes as electrofugal groups in allylic alkylation. Tetrahedron Lett 21:2591–2594

    CAS  Google Scholar 

  122. Trost BM, Self CR (1984) On the palladium-catalyzed alkylation of silyl-substituted allyl acetates with enolates. J Org Chem 49:468–473

    CAS  Google Scholar 

  123. Tsuji J et al (1983) Palladium-catalyzed allylation of ketones and aldehydes with allylic carbonates via silyl enol ethers under neutral conditions. Chem Lett 1325–1326

    Google Scholar 

  124. Kazmaier U, Zumpe FL (1999) Chelated enolates of amino acid esters - efficient nucleophiles in palladium-catalyzed allylic substitutions. Angew Chem Int Ed 38:1468–1470

    CAS  Google Scholar 

  125. Shimizu I et al (1980) Palladium-catalyzed rearrangement of allylic esters of acetoacetic acid to give γ, δ-unsaturated methyl ketones. Tetrahedron Lett 21:3199–3202

    CAS  Google Scholar 

  126. Tsuda T et al (1980) Facile generation of a reactive palladium(II) enolate intermediate by the decarboxylation of palladium(II) β-ketocarboxylate and its utilization in allylic acylation. J Am Chem Soc 102:6381–6384

    CAS  Google Scholar 

  127. Tsuji J et al (1983) Palladium-catalyzed allylation of ketones and aldehydes via allyl enol carbonates. Tetrahedron Lett 24:1793–1796

    CAS  Google Scholar 

  128. Tunge JA, Burger EC (2005) Transition metal catalyzed decarboxylative additions of enolates. Eur J Org Chem 1715–1726

    Google Scholar 

  129. You SL, Dai LX (2006) Enantioselective palladium-catalyzed decarboxylative allylic alkylations. Angew Chem Int Ed 45:5246–5248

    CAS  Google Scholar 

  130. Fiaud JC, Aribi-Zouioueche L (1982) Stereochemistry in the palladium-catalyzed rearrangement of some cyclohex-2-enyl acetoacetates. Tetrahedron Lett 23:5279–5282

    CAS  Google Scholar 

  131. Trost BM et al (2009) Palladium-catalyzed decarboxylative asymmetric allylic alkylation of enol carbonates. J Am Chem Soc 131:18343–18357

    CAS  Google Scholar 

  132. Trost BM et al (2010) Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles: a powerful method for C-X bond formation. Chem Sci 1:427–440

    CAS  Google Scholar 

  133. Nagano T, Kobayashi S (2009) Palladium-catalyzed allylic amination using aqueous ammonia for the synthesis of primary amines. J Am Chem Soc 131:4200–4201

    CAS  Google Scholar 

  134. Murahashi SI et al (1988) Palladium(0)-catalyzed hydroxylamination of allyl esters. Synthesis of N-allylhydroxylamines and secondary allylamines. Tetrahedron Lett 29:2973–2976

    CAS  Google Scholar 

  135. Murahashi SI et al (1986) Palladium(0) catalyzed azidation and amination of allyl acetates. Selective synthesis of allyl azides and primary allyl amines. Tetrahedron Lett 27:227–230

    CAS  Google Scholar 

  136. Inoue Y et al (1985) Direct N-allylation of amides with 2-allylisourea catalyzed by palladium(0). Bull Chem Soc Jpn 58:2721–2722

    CAS  Google Scholar 

  137. Cerezo S et al (1998) Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide and cyanamide. I. Tetrahedron 54:14869–14884

    CAS  Google Scholar 

  138. Byström SE et al (1985) Synthesis of protected allylamines via palladium-catalyzed amide addition to allylic substrates. Tetrahedron Lett 26:1749–1752

    Google Scholar 

  139. Connell RD et al (1988) An efficient, palladium-catalyzed route to protected allylic amines. J Org Chem 53:3845–3849

    CAS  Google Scholar 

  140. Inoue Y et al (1984) N-Allylation of imides catalyzed by palladium(0). Bull Chem Soc Jpn 57:3021–3022

    CAS  Google Scholar 

  141. Trost BM, Sudhakar AR (1987) A cis hydroxyamination equivalent: application to the synthesis of (−)-acosamine. J Am Chem Soc 109:3792–3794

    CAS  Google Scholar 

  142. Trost BM et al (1988) A transition-metal-controlled synthesis of (±)-aristeromycin and (±)-2’,3’-diepi-aristeromycin. An unusual directive effect in hydroxylations. J Am Chem Soc 110:621–622

    CAS  Google Scholar 

  143. Deardorff DR et al (1985) A palladium-catalyzed route to mono- and diprotected cis-2-cyclopentene-1,4-diols. Tetrahedron Lett 26:5615–5618

    CAS  Google Scholar 

  144. Trost BM, Organ MG (1994) Deracemization of cyclic allyl esters. J Am Chem Soc 116:10320–10321

    CAS  Google Scholar 

  145. Trost BM et al (1993) Triphenylsilanol as a water surrogate for regioselective Pd catalyzed allylations. Tetrahedron Lett 34:1421–1424

    CAS  Google Scholar 

  146. Trost BM, McEachern EJ (1999) Inorganic carbonates as nucleophiles for the asymmetric synthesis of vinylglycidols. J Am Chem Soc 121:8649–8650

    CAS  Google Scholar 

  147. Trost BM, Scanlan TS (1986) Synthesis of allyl sulfides via a palladium mediated allylation. Tetrahedron Lett 27:4141–4147

    CAS  Google Scholar 

  148. Auburn PR et al (1986) Homogeneous catalysis. Production of allyl alkyl sulphides by palladium mediated allylation. J Chem Soc, Chem Commun 146–147

    Google Scholar 

  149. Lu X, Ni Z (1987) Palladium-catalyzed synthesis of allylic and benzylic sulfides from the corresponding dithiocarbonates. Synthesis 66–68

    Google Scholar 

  150. Goux C et al (1992) Synthesis of allyl aryl sulphides by palladium(0)-mediated alkylation of thiols. Tetrahedron Lett 33:8099–8102

    CAS  Google Scholar 

  151. Maitro G et al (2006) Preparation of allyl sulfoxides by palladium-catalyzed allylic alkylation of sulfenate anions. J Org Chem 71:7449–7454

    CAS  Google Scholar 

  152. Inomata K et al (1981) Regio- and stereocontrolled synthesis of allylic p-tolyl sulfones catalyzed by palladium(0) complex. Chem Lett 1357–1360

    Google Scholar 

  153. Divekar S et al (1999) Palladium-catalyzed synthesis of allylic thioacetates. A convenient access to allylic thiols. Tetrahedron 55:4369–4376

    CAS  Google Scholar 

  154. Lüssem BJ, Gais HJ (2004) Palladium-catalyzed enantioselective allylic alkylation of thiocarboxylate ions: asymmetric synthesis of allylic thioesters and memory effect/dynamic kinetic resolution of allylic esters. J Org Chem 69:4041–4052

    Google Scholar 

  155. Moreno-Mañas M et al (1993) Palladium-catalyzed allylation of pyrimidine-2,4-diones (uracils) and of 6-membered heterocyclic ambident sulfur nucleophiles. Tetrahedron 49:1457–1464

    Google Scholar 

  156. Arredondo Y et al (1993) Palladium-catalyzed allylation of 5-membered heterocyclic ambident sulfur nucleophiles. Tetrahedron 49:1465–1470

    CAS  Google Scholar 

  157. Yamada Y et al (1979) Palladium-catalyzed thiono-thiolo allylic rearrangement of O-allyl phosphoro- and phosphonothionates. Tetrahedron Lett 20:5015–5018

    Google Scholar 

  158. Hiroi K et al (1984) Palladium-catalysed allylic sulphinate-sulphone rearrangements. Asymmetric induction in the palladium-catalysed transfer of chiral sulphinates to sulphones. J Chem Soc, Chem Commun 303–305

    Google Scholar 

  159. Tamaru Y et al (1990) Palladium-catalyzed [2,3] rearrangement of alkyl allyl sulfites to alkyl allylsulfonates. J Org Chem 55:1823–1829

    CAS  Google Scholar 

  160. Fiaud JC (1983) The palladium-catalysed reaction of lithium diphenylthiophosphides with allylic carboxylates. A stereoselective synthesis of phosphine sulfides. J Chem Soc, Chem Commun 1055–1056

    Google Scholar 

  161. Butti P et al (2008) Palladium-catalyzed enantioselective allylic phosphination. Angew Chem Int Ed 47:4878–4881

    CAS  Google Scholar 

  162. Moreno-Mañas M, Trius A (1981) Double bond formation by one pot palladium induced reactions between aldehydes, allylic alcohols and triphenylphosphine. Tetrahedron Lett 22:3109–3112

    Google Scholar 

  163. Malet R et al (1992) Palladium-catalyzed preparation of dialkyl allylphosphonates. A new preparation of diethyl 2-oxoethylphosphonate. Synth Commun 22:2219–2228

    CAS  Google Scholar 

  164. Matsushita H, Negishi E (1981) Palladium-catalyzed stereo- and regiospecific coupling of allylic derivatives with alkenyl- and arylmetals. A highly selective synthesis of 1,4-dienes. J Am Chem Soc 103:2882–2884

    CAS  Google Scholar 

  165. Miyaura N et al (1980) The palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with allylic or benzylic bromides. Convenient syntheses of 1,4-alkadienes and allylbenzenes from alkynes via hydroboration. Tetrahedron Lett 21:2865–2868

    CAS  Google Scholar 

  166. Yatagai H (1980) The reaction of alkenylboranes with palladium acetate. Stereoselective synthesis of olefinic derivatives. Bull Chem Soc Jpn 53:1670–1676

    CAS  Google Scholar 

  167. Hayashi T et al (1981) Regioselective allylation of a Grignard reagent catalysed by phosphine-nickel and -palladium complexes. J Chem Soc, Chem Commun 313–314

    Google Scholar 

  168. Yoshida J et al (1978) Stereoselective preparation of 1,4-dienes by palladium catalyzed allylation of (E)-alkenylpentafluorosilicates. Application to total synthesis of (±)-recifeiolide. Tetrahedron Lett 19:2161–2164

    Google Scholar 

  169. Hayasi Y et al (1981) Ligand control in palladium-catalyzed coupling reactions between organozirconium compounds and allylic species. Tetrahedron Lett 22:2629–2632

    CAS  Google Scholar 

  170. Tsuji Y et al (1998) Palladium-complex-catalyzed cyanation of allylic carbonates and acetates using trimethylsilyl cyanide. Organometallics 17:4835–4841

    CAS  Google Scholar 

  171. Jones DN, Knox SD (1975) Stereochemistry of formation and reduction of π-allyl palladium chloride complexes from steroidal olefins. J Chem Soc, Chem Commun 165–166

    Google Scholar 

  172. Keinan E, Greenspoon N (1982) Organo tin nucleophiles III. Palladium catalyzed reductive cleavage of allylic heterosubstituents with tin hydride. Tetrahedron Lett 23:241–244

    CAS  Google Scholar 

  173. Mandai T et al (1994) A novel method for stereospecific generation of natural C-17 stereochemistry and either C-20 epimer in steroid side chains by palladium-catalyzed hydrogenolysis of C-17 and C-20 allylic carbonates. Tetrahedron 50:485–486

    Google Scholar 

  174. Hey H, Arpe HJ (1973) Removal of allyl groups by formic acid catalyzed by (triphenylphosphane)palladium. Angew Chem Int Ed Engl 12:928–929

    Google Scholar 

  175. Tsuji J, Yamakawa T (1979) A convenient method for the preparation of 1-olefins by the palladium catalyzed hydrogenolysis of allylic acetates and allylic phenyl ethers with ammonium formate. Tetrahedron Lett 20:613–616

    Google Scholar 

  176. Krafft ME et al (1998) Heteroatom-directed, palladium-catalyzed, regioselective allylation: substitution with inversion. J Org Chem 63:1748–1749

    CAS  Google Scholar 

  177. Krafft ME et al (1998) Regioselective additions to π-ally1 metal complexes. Pure Appl Chem 70:1083–1090

    CAS  Google Scholar 

  178. Krafft ME, Lucas MC (2003) Palladium-catalyzed, heteroatom assisted, regioselective cyclizations. Chem Commun 1232–1233

    Google Scholar 

  179. Itami K et al (2001) Regioselective catalytic allylic alkylation directed by removable 2-PyMe2Si group. J Am Chem Soc 12:6957–6958

    Google Scholar 

  180. Cook GR et al (2003) Hydrogen bond directed highly regioselective palladium-catalyzed allylic substitution. J Am Chem Soc 125:5115–5120

    CAS  Google Scholar 

  181. Poli G, Madec D (2004) Unusual regioselectivities in palladium-catalyzed allylic substitution. Chemtracts - Org Chem 17:104–114

    CAS  Google Scholar 

  182. Poli G, Scolastico C (1999) New modes of regiocontrol in palladium-catalyzed allylic alkylations. Chemtracts - Org Chem 12:822–836

    CAS  Google Scholar 

  183. van Haaren RJ et al (2002) The effect of ligand donor atoms on the regioselectivity in the palladium catalyzed allylic alkylation. Inorganica Chimica Acta 327:108–115

    Google Scholar 

  184. Oslob JD et al (1997) Steric influences on the selectivity in palladium-catalyzed allylation. Organometallics 16:3015–3021

    CAS  Google Scholar 

  185. Branchadell V et al (1999) Density functional study on the regioselectivity of nucleophilic attack in 1,3-disubstituted (diphosphino)(η3-allyl)palladium cations. Organometallics 18:4934–4941

    CAS  Google Scholar 

  186. Åkermark B et al (1984) Alkylation of (π-allyl)palladium systems. Mechanism and regiocontrol. Organometallics 3:679–682

    Google Scholar 

  187. Åkermark B et al (1987) Ligand effects and nucleophilic addition to (η3-allyl)palladium Complexes. A carbon-13 Nuclear Magnetic Resonance Study. Organometallics 6:620–628

    Google Scholar 

  188. Goldfuss B (2006) Electronic differentiations in palladium-catalyzed allylic substitutions. J Organomet Chem 691:4508–4513

    CAS  Google Scholar 

  189. Lange DA, Goldfuss B (2007) Electronic differentiation competes with transition state sensitivity in palladium-catalyzed allylic substitutions. Beilstein J Org Chem. doi:10.1186/1860-5397-3-36

  190. Dawson GJ et al (1993) Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands. Tetrahedron Lett 34:3149–3150

    CAS  Google Scholar 

  191. Sprinz J, Helmchen G (1993) Phosphinoaryl- and phosphinoalkyloxazolines as new chiral ligands for enantioselective catalysis: very high enantioselectivity in palladium catalyzed allylic substitutions. Tetrahedron Lett 34:1769–1772

    CAS  Google Scholar 

  192. von Matt P, Pfaltz A (1993) Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd-catalyzed allylic substitution. Angew Chem Int Ed 32:566–568

    Google Scholar 

  193. Brown JM et al (1994) Mechanistic and synthetic studies in catalytic allylic alkylation with palladium complexes of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline. Tetrahedron 50:4493–4506

    CAS  Google Scholar 

  194. Ansell J, Wills M (2002) Enantioselective catalysis using phosphorus-donor ligands containing two or three P–N or P–O bonds. Chem Soc Rev 31:259–268

    CAS  Google Scholar 

  195. Prétôt R, Pfaltz A (1998) New ligands for regio- and enantiocontrol in Pd-catalyzed allylic alkylations. Angew Chem Int Ed 37:323–325

    Google Scholar 

  196. Hilgraf R, Pfaltz A (1999) Chiral bis(N-tosylamino)phosphine- and TADDOL-phosphite-oxazolines as ligands in asymmetric catalysis. Synlett 1814–1816

    Google Scholar 

  197. Helmchen G, Pfaltz A (2000) Phosphinooxazolines – a new class of versatile, modular P, N-ligands for asymmetric catalysis. Acc Chem Res 33:336–345

    CAS  Google Scholar 

  198. Pamies O et al (2005) New phosphite-oxazoline ligands for efficient Pd-catalyzed substitution reactions. J Am Chem Soc 127:3646–3647

    CAS  Google Scholar 

  199. You SL et al (2001) Highly regio- and enantioselective Pd-catalyzed allylic alkylation and amination of monosubstituted allylic acetates with novel ferrocene P, N-ligands. J Am Chem Soc 123:7471–7472

    CAS  Google Scholar 

  200. van Haaren RJ et al (2000) Bite angle effect of bidentate P–N ligands in palladium catalysed allylic alkylation. J Chem Soc, Dalton Trans 1549–1554

    Google Scholar 

  201. Kawatsura M et al (1998) Regiocontrol in palladium-catalysed allylic alkylation by addition of lithium iodide. J Chem Soc, Chem Commun 217–218

    Google Scholar 

  202. Sjögren M et al (1994) Stereo- and regiocontrol in palladium-catalyzed allylic alkylation using 1,10-phenanthrolines as ligands. Organometallics 13:1963–1971

    Google Scholar 

  203. Åkermark B et al (1990) Ligand-induced selective stabilization of the anti isomer in (η3-allyl)palladium complexes: an attempt to control the E-Z stereochemistry in palladium-promoted allylic substitutions. J Am Chem Soc 112:4587–4588

    Google Scholar 

  204. Sjögren MPT et al (1992) Selective stabilization of the anti-isomer of η3-allyl palladium and platinum complexes. Organometallics 11:3954–3964

    Google Scholar 

  205. Kazmaier U, Zumpe F (2000) Palladium-catalyzed allylic alkylations without isomerization-dream or reality? Angew Chem Int Ed 39:802–804

    CAS  Google Scholar 

  206. Kazmaier U et al (2008) Influences on the regioselectivity of palladium-catalyzed allylic alkylations. Chem Eur J 14:1322–1329

    CAS  Google Scholar 

  207. Krämer K et al (2006) Isomerization-free allylic alkylations of terminal π-allyl palladium complexes. J Org Chem 71:8950–8953

    Google Scholar 

  208. Fiaud JC, Malleron JL (1981) To what extent is a π-allylic intermediate involved in some palladium-catalyzed alkylations ? Tetrahedron Lett 22:1399–1402

    CAS  Google Scholar 

  209. Trost BM, Schmuff NR (1981) On the mechanism of allylic alkylations catalyzed by palladium. Tetrahedron Lett 22:2999–3000

    CAS  Google Scholar 

  210. Trost BM, Bunt RC (1996) On the question of the symmetry of formally symmetrical π-(allyl)palladium cationic intermediates in allylic alkylations. J Am Chem Soc 118:235–236

    CAS  Google Scholar 

  211. Lloyd-Jones GC, Stephen SC (1998) Memory effects in Pd-catalyzed allylic alkylation: stereochemical labeling through isotopic desymmetrization. Chem Eur J 4:2539–2549

    CAS  Google Scholar 

  212. Poli G, Scolastico C (1999) Memory effects in Pd-catalyzed allylic alkylations. Chemtracts - Org Chem 12:837–845

    CAS  Google Scholar 

  213. Jutand A (2003) The use of conductivity measurements for the characterization of cationic Palladium complexes and for the determination of kinetic and thermodynamic data in Palladium-catalyzed reactions. Eur J Inorg Chem 2017–2040

    Google Scholar 

  214. Sprinz J et al (1994) Catalysis of allylic substitutions by Pd complexes of oxazolines containing an additional P, S, or Se Center. X-ray crystal structures and solution structures of chiral π-allyl palladium complexes of phosphinoaryloxazolines. Tetrahedron Lett 35:1523–1526

    CAS  Google Scholar 

  215. Lloyd-Jones GC, Stephen SC (1998) Chloride ion effects on kinetic resolution in Pd-catalysed allylic alkylation. Chem Commun 2321–2322

    Google Scholar 

  216. Kozuch S et al (2005) What makes for a good catalytic cycle? A theoretical study of the role of an anionic palladium(0) complex in the cross coupling of an aryl halide with an anionic nucleophile. Organometallics 24:2319–2330

    CAS  Google Scholar 

  217. Fristrup P et al (2008) On the nature of the intermediates and the role of chloride ions in Pd-catalyzed allylic alkylations: added insight from density functional theory. J Phys Chem A 112:12862–12867

    CAS  Google Scholar 

  218. Fristrup P et al (2006) Deconvoluting the memory effect in Pd-catalyzed allylic alkylation: effect of leaving group and added chloride. Chem Eur J 12:5352–5360

    CAS  Google Scholar 

  219. Hayashi T et al (1997) Regio- and enantio-selective allylic alkylation catalysed by achiral monophosphine–palladium complex. Chem Commun 561–562

    Google Scholar 

  220. Hayashi T et al (1998) Retention of regiochemistry of allylic esters in palladium-catalyzed allylic alkylation in the presence of a MOP ligand. J Am Chem Soc 120:1681–1687

    CAS  Google Scholar 

  221. Goldfuss B, Kazmaier U (2000) Electronic differentiations in palladium alkene complexes: trans-phosphine preference of allylic leaving groups. Tetrahedron 56:6493–6496

    CAS  Google Scholar 

  222. Blacker AJ (1999) Use of tricyclohexylphosphine to control regiochemistry in palladium-catalyzed allylic alkylation. Org Lett 1:1969–1971

    CAS  Google Scholar 

  223. Acemoglu L, Williams JMJ (2001) Remarkable ligand effects in regioselective palladium-catalysed allylic substitution reactions. Adv Synth Catal 343:75–77

    CAS  Google Scholar 

  224. Faller JW, Sarantopoulos N (2004) Retention of configuration and regiochemistry in allylic alkylations via the memory effect. Organometallics 23:2179–2185

    CAS  Google Scholar 

  225. Trost BM, Toste FD (1999) Regio and enantioselective allylic alkylation of an unsymmetrical substrate: a working model. J Am Chem Soc 121:4545–4554

    CAS  Google Scholar 

  226. Wang Y et al (2003) Backbone effect of MAP ligands on their coordination patterns with palladium(II). Organometallics 22:1856–1862

    CAS  Google Scholar 

  227. Svensen N et al (2007) Memory effects in palladium-catalyzed allylic alkylations of 2-cyclohexen-1-yl acetate. Adv Synth Catal 349:2631–2640

    CAS  Google Scholar 

  228. Butts CP et al (1999) Robust and catalytically active mono- and bis-Pd-complexes of the ‘Trost modular ligand’. Chem Commun 1707–1708

    Google Scholar 

  229. Fairlamb IJS et al (2002) Analysis of stereochemical convergence in asymmetric Pd-catalysed allylic alkylation reactions complicated by halide and memory effects. Chem Eur J 8:4443–4453

    CAS  Google Scholar 

  230. Lloyd-Jones GC et al (2004) Coordination of the Trost modular ligand to palladium allyl fragments: oligomers, monomers, and memory effects in catalysis. Pure Appl Chem 76:589–601

    CAS  Google Scholar 

  231. Fairlamb IJS, Lloyd-Jones GC (2000) On the effect of catalyst loading in Pd-catalysed allylic alkylation. Chem Commun 2447–2448

    Google Scholar 

  232. Trost BM, Surivet JP (2000) Diastereo- and enantioselective allylation of substituted nitroalkanes. J Am Chem Soc 122:6291–6292

    CAS  Google Scholar 

  233. Gais HJ et al (2003) Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols. Chem Eur J 9:4202–4221

    CAS  Google Scholar 

  234. Lloyd-Jones GC (2001) Isotopic desymmetrisation as a stereochemical probe. Synlett 161–183

    Google Scholar 

  235. Fairlamb IJS et al (2004) Isotopic desymmetrization in the study of homogeneous catalysis. Phos Sulf Sil 179:907–910

    CAS  Google Scholar 

  236. Trost BM, Van Vranken DL (1996) Asymmetric transition metal-catalyzed allylic alkylations. Chem Rev 96:395–422

    CAS  Google Scholar 

  237. Lu Z, Ma S (2008) Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed 47:258–297

    CAS  Google Scholar 

  238. Bantreil X et al (2011) γ- and δ-Lactams via palladium-catalyzed intramolecular allylic alkylation: enantioselective synthesis, NMR investigations, and DFT rationalization. Chem Eur J 17:2885–2896

    CAS  Google Scholar 

  239. Fiaud JC, Legros JY (1990) Substrate leaving group control of the enantioselectivity in the palladium-catalyzed asymmetric allylic substitution of 4-alkyl-1-vinylcyclohexyl derivatives. J Org Chem 55:4840–4846

    CAS  Google Scholar 

  240. Trost BM, Dong G (2006) New class of nucleophiles for palladium-catalyzed asymmetric allylic alkylation. Total synthesis of agelastatin A. J Am Chem Soc 128:6054–6055

    CAS  Google Scholar 

  241. Trost BM, Asakawa N (1999) An asymmetric synthesis of the vitamin E core by Pd catalyzed discrimination of enantiotopic alkene faces. Synthesis 1491–1494

    Google Scholar 

  242. Trost BM, Toste FD (2003) Palladium catalyzed kinetic and dynamic kinetic asymmetric transformations of γ-acyloxybutenolides. Enantioselective total synthesis of (+)-aflatoxin B1 and B2a. J Am Chem Soc 125:3090–3100

    CAS  Google Scholar 

  243. Trost BM, Oslob JD (1999) Asymmetric synthesis of (−)-Anatoxin-a via an asymmetric cyclization using a new ligand for Pd-catalyzed alkylations. J Am Chem Soc 121:3057–3064

    CAS  Google Scholar 

  244. He XC et al (2001) Studies on the asymmetric synthesis of huperzine A. Part 2: highly enantioselective palladium-catalyzed bicycloannulation of the β-keto-ester using new chiral ferrocenylphosphine ligands. Tetrahedron: Asymmetry 12:3213–3216

    CAS  Google Scholar 

  245. Kitagawa O et al (2006) Catalytic asymmetric desymmetrization of meso-diamide derivatives through enantioselective N-allylation with a chiral π-allyl Pd catalyst: improvement and reversal of the enantioselectivity. J Org Chem 71:2524–2527

    CAS  Google Scholar 

  246. Hayashi T et al (1988) Asymmetric cyclization of 2-butenylene dicarbamates catalyzed by chiral ferrocenylphosphine-palladium complexes: catalytic asymmetric synthesis of optically active 2-amino-3-butenols. Tetrahedron Lett 29:99–102

    CAS  Google Scholar 

Download references

Acknowledgments

The authors warmly thank Professors Francesco Sannicolò and Guy Lloyd-Jones for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Poli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poli, G., Prestat, G., Liron, F., Kammerer-Pentier, C. (2011). Selectivity in Palladium-Catalyzed Allylic Substitution. In: Kazmaier, U. (eds) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Topics in Organometallic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_14

Download citation

Publish with us

Policies and ethics