Skip to main content
Book cover

pp 1–20Cite as

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin–Avidin Technology

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry

Abstract

Artificial metalloenzymes can be created by incorporating an active metal catalyst precursor in a macromolecular host. When considering such artificial metalloenzymes, the first point to address is how to localize the active metal moiety within the protein scaffold. Although a covalent anchoring strategy may seem most attractive at first, supramolecular anchoring strategy has proven most successful thus far.

In this context and inspired by Whitesides’ seminal paper, we have exploited the biotin–avidin technology to anchor a biotinylated active metal catalyst precursor within either avidin or streptavidin. A combined chemical and genetic strategy allows a rapid (chemogenetic) optimization of both the activity and the selectivity of the resulting artificial metalloenzymes. The chiral environment, provided by second coordination sphere interactions between the metal and the host protein, can be varied by introduction of a spacer between the biotin anchor and the metal moiety or by variation of the ligand scaffold. Alternatively, mutagenesis of the host protein allows a fine tuning of the activity and the selectivity.

With this protocol, we have been able to produce artificial metalloenzymes based on the biotin–avidin technology for the enantioselective hydrogenation of N-protected dehydroaminoacids, the transfer hydrogenation of prochiral ketones as well as the allylic alkylation of symmetric substrates. In all cases selectivities >90% were achieved. Most recently, guided by an X-ray structure of an artificial metalloenzyme, we have extended the chemogenetic optimization to a designed evolution scheme. Designed evolution combines rational design with combinatorial screening. In this chapter, we emphasize the similarities and the differences between artificial metalloenzymes and their homogeneous or enzymatic counterparts.

This is a preview of subscription content, log in via an institution.

Abbreviations

ee:

Enantiomeric excess

WT:

Wild-type

Sav:

Streptavidin

Avi:

Avidin

(strept)avidin:

Either avidin or streptavidin

K M :

Michaelis–Menten constant

k cat :

Number of substrate molecules handled by one active site per second

v max :

Maximum velocity of the enzyme under the conditions of the experiment

DMSO:

Dimethyl sulfoxide

EtOAc:

Ethyl acetate

NBD:

Norbornadiene

COD:

Cyclooctadiene

MES:

2-(N-morpholino)ethanesulfonic acid

MOPS:

3-(N-morpholino)propanesulfonic acid

PYRPHOS:

(3R,4R)-3,4-bis(diphenylphosphino)pyrrolidine

References

  1. Wilchek M, Bayer EA (1990b) Methods Enzymol 184:14

    Article  CAS  Google Scholar 

  2. Sanger F (1959) Science 129:1340

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Lu Y (2006) Inorg Chem 45:9930

    Article  PubMed  CAS  Google Scholar 

  4. Bornscheuer UT, Kazlauskas RJ (2004) Angew Chem Int Ed 43:6032

    Article  CAS  Google Scholar 

  5. Creus M, Ward TR (2007) Org Biomol Chem 5:1835

    Article  PubMed  CAS  Google Scholar 

  6. Crow JM (2007) Chem World 4:50

    CAS  Google Scholar 

  7. Davis BG (2003) Curr Opin Biotechnol 14:379

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi T, Hisaeda Y (2002) Acc Chem Res 35:35

    Article  PubMed  CAS  Google Scholar 

  9. Kraemer R (2006) Angew Chem Int Ed 45:858

    Article  CAS  Google Scholar 

  10. Letondor C, Ward TR (2006) ChemBioChem 7:1845

    Article  PubMed  CAS  Google Scholar 

  11. Lu Y (2005) Curr Opin Chem Biol 9:118

    Article  PubMed  CAS  Google Scholar 

  12. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047

    Article  PubMed  CAS  Google Scholar 

  13. Qi D, Tann C-M, Haring D, Distefano MD (2001) Chem Rev 101:3081

    Article  PubMed  CAS  Google Scholar 

  14. Steinreiber J, Ward TR (2008) Coord Chem Rev 252:751

    Article  CAS  Google Scholar 

  15. Thomas CM, Ward TR (2005a) Chem Soc Rev 34:337

    Article  CAS  Google Scholar 

  16. Thomas CM, Ward TR (2005b) Appl Organometal Chem 19:35

    Article  CAS  Google Scholar 

  17. Ueno T, Satoshi A, Yokoi N, Watanabe Y (2007) Coord Chem Rev 251:2717

    Article  CAS  Google Scholar 

  18. Arnold FH (1998) Acc Chem Res 31:125

    Article  CAS  Google Scholar 

  19. Morley KL, Kazlauskas RJ (2005) Trends Biotechnol 23:231

    Article  PubMed  CAS  Google Scholar 

  20. Peisajovich SG, Tawfik DS (2007) Nat Methods 4:991

    Article  PubMed  CAS  Google Scholar 

  21. Reetz MT (2004) Meth Enzymol 388:238

    Article  PubMed  CAS  Google Scholar 

  22. Park H-S, Nam S-H, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim H-S (2006) Science 311:535

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Seelig B, Szostak JW (2007) Nature 448:828

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Wilchek M, Bayer EA (1990a) Methods Enzymol 184:5

    Article  CAS  Google Scholar 

  25. McMahon RJ (2008) Avidin–biotin interactions (methods in molecular biology) Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Knowles WS, Noyori R (2007) Acc Chem Res 40:1238

    Article  PubMed  CAS  Google Scholar 

  27. JA, Osborn FH, Jardine JF, Young G Wilkinson (1966) J Chem Soc A: 1711

    Google Scholar 

  28. Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103

    Article  CAS  Google Scholar 

  29. Knowles WS, Sabacky MJ, Vineyard BD (1972) J Chem Soc Chem Commun 1972:10

    Article  Google Scholar 

  30. Knowles WS (2002) Angew Chem Int Ed 41:1998

    Article  CAS  Google Scholar 

  31. Kagan HB, Dang Tuan P (1972) J Am Chem Soc 94:6429

    Article  CAS  Google Scholar 

  32. Noyori R (2002) Angew Chem Int Ed 41:2008

    Article  CAS  Google Scholar 

  33. Burk MJ (2000) Acc Chem Res 33:363

    Article  PubMed  CAS  Google Scholar 

  34. Wilson ME, Whitesides GM (1978) J Am Chem Soc 100:306

    Article  CAS  Google Scholar 

  35. Lin C-C, Lin C-W, Chan ASC (1999) Tetrahedron: Asymmetry 10:1887

    Article  CAS  Google Scholar 

  36. Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR (2003) J Am Chem Soc 125:9030

    Article  PubMed  CAS  Google Scholar 

  37. Collot J, Humbert N, Skander M, Klein G, Ward TR (2004) J Organometal Chem 689:4868

    Article  CAS  Google Scholar 

  38. Klein G, Humbert N, Gradinaru J, Ivanova A, Gilardoni F, Rusbandi UE, Ward TR (2005) Angew Chem Int Ed 44:7764

    Article  CAS  Google Scholar 

  39. Rusbandi Untung E, Lo C, Skander M, Ivanova A, Creus M, Humbert N, Ward Thomas R (2007) Adv Synth Catal 349:1923

    Article  CAS  Google Scholar 

  40. Skander M, Humbert N, Collot J, Gradinaru J, Klein G, Loosli A, Sauser J, Zocchi A, Gilardoni F, Ward TR (2004) J Am Chem Soc 126:14411

    Article  PubMed  CAS  Google Scholar 

  41. Skander M, Malan C, Ivanova A, Ward TR (2005) Chem Commun 2005:4815

    Article  CAS  Google Scholar 

  42. Ward TR (2005) Chem Eur J 11:3798

    Article  CAS  Google Scholar 

  43. Reetz MT, Peyeralans JJ-P, Maichele A, Fu Y, Maywald M (2006) Chem Commun 2006:4318

    Article  CAS  Google Scholar 

  44. Petrounia IP, Arnold FH (2000) Curr Opin Biotechnol 11:325

    Article  PubMed  CAS  Google Scholar 

  45. Le Trong I, Humbert N, Ward TR, Stenkamp RE (2006) J Mol Biol 356:738

    Article  PubMed  CAS  Google Scholar 

  46. Loosli A, , Rusbandi UE, Gradinaru J, Bernauer K, Schlaepfer, CWMeyer, MMazurek, SNovic, MWard TR(2006) Inorg Chem 45:660

    Article  PubMed  CAS  Google Scholar 

  47. Tsuji J (2004) Palladium reagents and catalysts: new perspectives for the 21st century. Wiley, Chichester

    Book  Google Scholar 

  48. Faber K (2004) Biotransformation in organic chemistry, 5th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  49. Trost BM (2004) J Org Chem 69:5813

    Article  PubMed  CAS  Google Scholar 

  50. Pierron J, Malan C, Creus M, Gradinaru J, Hafner I, Ivanova A, Sardo A, Ward TR (2008) Angew Chem Int Ed Engl 47:701

    Article  PubMed  CAS  Google Scholar 

  51. Wendt KU, Schulz GE, Corey EJ, Liu DR (2000) Angew Chem Int Ed 39:2812

    Article  CAS  Google Scholar 

  52. Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  53. Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97

    Article  CAS  Google Scholar 

  54. Samec JSM, Bäckvall J-E, Andersson PG, Brandt P (2006) Chem Soc Rev 35:237

    Article  PubMed  CAS  Google Scholar 

  55. Yamakawa M, Yamada I, Noyori R (2001) Angew Chem Int Ed 40:2818

    Article  CAS  Google Scholar 

  56. Schlatter A, Kundu MK, Woggon WD (2004) Angew Chem Int Ed 43:6731

    Article  CAS  Google Scholar 

  57. Creus M, Pordea A, Rossel T, Sardo A, Letondor C, Ivanova A, Letrong I, Stenkamp RE, Ward TR (2008) Angew Chem Int Ed Engl 47:1400

    Article  PubMed  CAS  Google Scholar 

  58. Letondor C, Humbert N, Ward TR (2005) Proc Natl Acad Sci USA 102:4683

    Article  PubMed  ADS  CAS  Google Scholar 

  59. Letondor C, Pordea A, Humbert N, Ivanova A, Mazurek S, Novic M, Ward TR (2006) J Am Chem Soc 128:8320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R Ward .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Steinreiber, J., Ward, T. (2008). Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin–Avidin Technology. In: Topics in Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2008_3

Download citation

  • DOI: https://doi.org/10.1007/3418_2008_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics