Advertisement

Ferrocene–Peptide Bioconjugates

  • Toshiyuki Moriuchi
  • Toshikazu Hirao
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 17)

Abstract

This chapter sketches an outline of ferrocene–peptide bioconjugates. A variety of ferrocene–peptide bioconjugates have been designed to induce highly ordered structures of peptides and develop new biomaterials. The ferrocene serves as a reliable organometallic scaffold for the construction of an ordered structure via intramolecular hydrogen bonding, wherein the attached peptide strands are regulated in appropriate dimensions. Another noteworthy feature of ferrocene–peptide bioconjugates is their strong tendency to self-assemble through the contribution of available hydrogen bonding sites in the solid state. Furthermore, the ferrocene moiety of ferrocene–peptide bioconjugates is able to act as a redox-switching center and an electrophore in the receptors and biomaterials.

Ferrocene Amino acid Peptide Hydrogen bond Chirality-organized structure 

Abbreviations

Ac

Acetyl

Bn

Benzyl

Boc

tert-Butoxycarbonyl

i-Bu

Isobutyl

CAN

Ceric ammonium nitrate

CD

Circular dichroism

COSY

Correlation spectroscopy

Cp

Cyclopentadienyl

Cp*

Pentamethyl cyclopentadienyl

DNA

Deoxyribonucleic acid

ET

Electron transfer

Et

Ethyl

FT-IR

Fourier-transform infrared spectrometry

L

Liter(s)

Me

Methyl

mol

Mole(s)

NMR

Nuclear magnetic resonance

NOE

Nuclear Overhauser effect

NOESY

Nuclear Overhauser and exchange spectroscopy

Ph

Phenyl

PNA

Peptide nucleic acid

Pr

Propyl

i-Pr

Isopropyl

SAM

Self-assembled monolayer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaouen G, Vessiéres A, Butler IS (1993) Acc Chem Res 26:361 Google Scholar
  2. 2.
    Severin K, Bergs R, Beck W (1998) Angew Chem Int Ed 37:1634 Google Scholar
  3. 3.
    Jaouen G (ed) (1999) Bioorganometallic chemistry (special issue). J Organomet Chem 589:1–126 Google Scholar
  4. 4.
    Braga D, Grepioni F, Desiraju GR (1998) Chem Rev 98:1375 Google Scholar
  5. 5.
    Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3348 Google Scholar
  6. 6.
    Swiegers GF, Malefetse TJ (2000) Chem Rev 100:3483 Google Scholar
  7. 7.
    Jeffrey GA (1997) An introduction to hydrogen bonding, 1st edn. Oxford University Press, New York Google Scholar
  8. 8.
    Conn MM, Rebek J Jr (1997) Chem Rev 97:1647 Google Scholar
  9. 9.
    Archer EA, Gong H, Krische MJ (2001) Tetrahedron 57:1139 Google Scholar
  10. 10.
    Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382 Google Scholar
  11. 11.
    Kyte J (1995) Structure in protein chemistry. Garland, New York Google Scholar
  12. 12.
    Branden C, Tooze J (1998) Introduction to protein structure, 2nd edn. Garland, New York Google Scholar
  13. 13.
    Togni A, Hayashi T (1995) Ferrocenes. Wiley, Weinheim Google Scholar
  14. 14.
    Schlögl K (1957) Monatsh Chem 88:601 CrossRefGoogle Scholar
  15. 15.
    Hauser CR, Lindsay JK (1957) J Org Chem 22:1246 Google Scholar
  16. 16.
    Osgerby JM, Pauson PL (1958) J Chem Soc 656 Google Scholar
  17. 17.
    Urban R, Ugi I (1975) Angew Chem Int Ed Engl 14:61 Google Scholar
  18. 18.
    Urban R, Eberle G, Marquarding D, Rehn D, Rehn H, Ugi I (1976) Angew Chem Int Ed Engl 15:627 Google Scholar
  19. 19.
    Cuingnet E, Sergheraert C, Tartar A (1980) J Organomet Chem 195:325 Google Scholar
  20. 20.
    Carlström A-S, Frejd T (1990) J Org Chem 55:4175 Google Scholar
  21. 21.
    Brunner H, König W, Nuber B (1993) Tetrahedron Asymmetry 4:699 Google Scholar
  22. 22.
    Jackson RFW, Turner D, Block MH (1996) Synlett 862 Google Scholar
  23. 23.
    Kira M, Matsubara T, Shinohara H, Sisido M (1997) Chem Lett 89 Google Scholar
  24. 24.
    Basu B, Chattopadhyay SK, Ritzén A, Frejd T (1997) Tetrahedron Asymmetry 8:1841 Google Scholar
  25. 25.
    Kayser B, Altman J, Nöth H, Knizek J, Beck W (1998) Eur J Inorg Chem 1791 Google Scholar
  26. 26.
    Hess A, Brosch O, Weyhermüller T, Metzler-Nolte N (1999) J Organomet Chem 589:75 Google Scholar
  27. 27.
    Brosch O, Weyhermüller T, Metzler-Nolte N (2000) Eur J Inorg Chem 323 Google Scholar
  28. 28.
    Hess A, Sehnert J, Weyhermüller T, Metzler-Nolte N (2000) Inorg Chem 39:5437 Google Scholar
  29. 29.
    Xu Y, Kraatz H-B (2001) Tetrahedron Lett 42:2601 Google Scholar
  30. 30.
    Maricic S, Frejd T (2002) J Org Chem 67:7600 Google Scholar
  31. 31.
    Mandal HS, Kraatz H-B (2003) J Organomet Chem 674:32 Google Scholar
  32. 32.
    Feigel M (1986) J Am Chem Soc 108:181 Google Scholar
  33. 33.
    Brandmeier V, Feigel M, Bremer M (1989) Angew Chem Int Ed Engl 28:486 Google Scholar
  34. 34.
    Brandmeier V, Feigel M (1989) Tetrahedron 45:1365 Google Scholar
  35. 35.
    Brandmeier V, Sauer WHB, Feigel M (1994) Helv Chim Acta 77:70 Google Scholar
  36. 36.
    Kemp DS, Bowen BR (1988) Tetrahedron Lett 29:5077 Google Scholar
  37. 37.
    Kemp DS, Bowen BR (1988) Tetrahedron Lett 29:5081 Google Scholar
  38. 38.
    Kemp DS (1990) Trends Biotechnol 8:249 Google Scholar
  39. 39.
    Kemp DS, Muendel CC, Blanchard DE, Bowen BR (1990) In: Rivier JE, Marshall GR (eds) Peptides: chemistry, structure, and biology. Proceedings of the 11th American peptide symposium. ESCOM, Leiden, p 674 Google Scholar
  40. 40.
    Kemp DS, Bowen BR, Muendel CC (1990) J Org Chem 55:4650 Google Scholar
  41. 41.
    Díaz H, Kelly JW (1991) Tetrahedron Lett 32:5725 Google Scholar
  42. 42.
    Díaz H, Espina JR, Kelly JW (1992) J Am Chem Soc 114:8316 Google Scholar
  43. 43.
    Díaz H, Tsang KY, Choo D, Espina JR, Kelly JW (1993) J Am Chem Soc 115:3790 Google Scholar
  44. 44.
    Díaz H, Tsang KY, Choo D, Kelly JW (1993) Tetrahedron 49:3533 Google Scholar
  45. 45.
    Graciani NR, Tsang KY, McCutchen SL, Kelly JW (1994) Bioorg Med Chem 2:999 Google Scholar
  46. 46.
    Tsang KY, Díaz H, Graciani N, Kelly JW (1994) J Am Chem Soc 116:3988 Google Scholar
  47. 47.
    Nowick JS, Powell NA, Martinez EJ, Smith EM, Noronha G (1992) J Org Chem 57:3763 Google Scholar
  48. 48.
    Nowick JS, Abdi M, Bellamo KA, Love JA, Martinez EJ, Noronha G, Smith EM, Ziller JW (1995) J Am Chem Soc 117:89 Google Scholar
  49. 49.
    Nowick JS, Smith EM, Noronha G (1995) J Org Chem 60:7386 Google Scholar
  50. 50.
    Nowick JS, Mahrus S, Smith EM, Ziller JW (1996) J Am Chem Soc 118:1066 Google Scholar
  51. 51.
    Nowick JS, Holmes DL, Mackin G, Noronha G, Shaka AJ, Smith EM (1996) J Am Chem Soc 118:2764 Google Scholar
  52. 52.
    Nowick JS, Smith EM, Pairish M (1996) Chem Soc Rev 25:401 Google Scholar
  53. 53.
    Nowick JS, Pairish M, Lee IQ, Holmes DL, Ziller JW (1997) J Am Chem Soc 119:5413 Google Scholar
  54. 54.
    Nowick JS (1999) Acc Chem Res 32:287 Google Scholar
  55. 55.
    Nowick JS, Tsai JH, Bui Q-CD, Maitra S (1999) J Am Chem Soc 121:8409 Google Scholar
  56. 56.
    Moriuchi T, Tamura T, Hirao T (2002) J Am Chem Soc 124:9356 Google Scholar
  57. 57.
    Jones IG, Jones W, North M (1998) J Org Chem 63:1505 Google Scholar
  58. 58.
    Ranganathan D, Haridas V, Kurur S, Thomas A, Madhusudanan KP, Nagaraj R, Kunwar AC, Sarma AVS, Karle IL (1998) J Am Chem Soc 120:8448 Google Scholar
  59. 59.
    Hackenberger CPR, Schiffers I, Runsink J, Bolm C (2004) J Org Chem 69:739 Google Scholar
  60. 60.
    Herrick RS, Jarret RM, Curran TP, Dragoli DR, Flaherty MB, Lindyberg SE, Slate RA, Thornton LC (1996) Tetrahedron Lett 37:5289 Google Scholar
  61. 61.
    Oberhoff M, Duda L, Karl J, Mohr R, Erker G, Fröhlich R, Grehl M (1996) Organometallics 15:4005 Google Scholar
  62. 62.
    Georgopoulou AS, Mingos DMP, White AJP, Williams DJ, Horrocks BR, Houlton A (2000) J Chem Soc Dalton Trans 2969 Google Scholar
  63. 63.
    van Staveren DR, Weyhermüller T, Metzler-Nolte N (2003) Dalton Trans 210 Google Scholar
  64. 64.
    Cerichelli G, Floris B, Ortaggi G (1974) J Organomet Chem 76:73 Google Scholar
  65. 65.
    Nomoto A, Moriuchi T, Yamazaki S, Ogawa A, Hirao T (1998) Chem Commun 1963 Google Scholar
  66. 66.
    Moriuchi T, Nomoto A, Yoshida K, Hirao T (1999) J Organomet Chem 589:50 Google Scholar
  67. 67.
    Moriuchi T, Nomoto A, Yoshida K, Ogawa A, Hirao T (2001) J Am Chem Soc 123:68 Google Scholar
  68. 68.
    Bauer W, Polborn K, Beck W (1999) J Organomet Chem 579:269 Google Scholar
  69. 69.
    Moriuchi T, Nomoto A, Yoshida K, Hirao T (2001) Organometallics 20:1008 Google Scholar
  70. 70.
    Moriuchi T, Nagai T, Hirao T (2005) Org Lett 7:5265 Google Scholar
  71. 71.
    Xu Y, Saweczko P, Kraatz H-B (2001) J Organomet Chem 637–639:335 Google Scholar
  72. 72.
    Maricic S, Berg U, Frejd T (2002) Tetrahedron 58:3085 Google Scholar
  73. 73.
    Kraatz H-B, Lusztyk J, Enright GD (1997) Inorg Chem 36:2400 Google Scholar
  74. 74.
    Gallagher JF, Kenny PTM, Sheehy MJ (1999) Inorg Chem Commun 2:200 Google Scholar
  75. 75.
    Baker MV, Kraatz H-B, Quail JW (2001) New J Chem 25:427 Google Scholar
  76. 76.
    Brosch O, Weyhermüller T, Metzler-Nolte N (1999) Inorg Chem 38:5308 Google Scholar
  77. 77.
    Savage D, Gallagher JF, Ida Y, Kenny PTM (2002) Inorg Chem Commun 5:1034 Google Scholar
  78. 78.
    Cung MT, Marraud M, Néel J, Aubry A (1976) J Chim Phys 73:213 Google Scholar
  79. 79.
    Moriuchi T, Yoshida K, Hirao T (2001) J Organomet Chem 637–639:75 Google Scholar
  80. 80.
    Saweczko P, Enright GD, Kraatz H-B (2001) Inorg Chem 40:4409 Google Scholar
  81. 81.
    Kraatz H-B, Leek DM, Houmam A, Enright GD, Lusztyk J, Wayner DDM (1999) J Organomet Chem 589:38 Google Scholar
  82. 82.
    Bediako-Amoa I, Silerova R, Kraatz H-B (2002) Chem Commun 2430 Google Scholar
  83. 83.
    Anfinsen CB, Edsall JT, Richards FM, Eisenberg DS (1991) Advances in protein chemistry. Academic, New York Google Scholar
  84. 84.
    Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, New York Google Scholar
  85. 85.
    Ghadiri MR, Choi C (1990) J Am Chem Soc 112:1630 Google Scholar
  86. 86.
    Handel T, DeGrado WF (1990) J Am Chem Soc 112:6710 Google Scholar
  87. 87.
    Ruan F, Chen Y, Hopkins PB (1990) J Am Chem Soc 112:9403 Google Scholar
  88. 88.
    Schneider JP, Kelly JW (1995) J Am Chem Soc 117:2533 Google Scholar
  89. 89.
    Gilbertson SR, Pawlick RV (1996) Angew Chem Int Ed Engl 35:902 Google Scholar
  90. 90.
    Merkle DL, Schmidt MH, Berg JM (1991) J Am Chem Soc 113:5450 Google Scholar
  91. 91.
    Gilbertson SR, Collibee SE, Agarkov A (2000) J Am Chem Soc 122:6522 Google Scholar
  92. 92.
    Moriuchi T, Yoshida K, Hirao T (2001) Organometallics 20:3101 Google Scholar
  93. 93.
    Freiesleben D, Polborn K, Robl C, Sünkel K, Beck W (1995) Can J Chem 73:1164 Google Scholar
  94. 94.
    Dialer H, Polborn K, Ponikwar W, Sünkel K, Beck W (2002) Chem Eur J 8:691 Google Scholar
  95. 95.
    Geißer B, Alsfasser R (2003) Inorg Chim Acta 344:102 Google Scholar
  96. 96.
    Kim M, Gokel GW (1987) J Chem Soc Chem Commun 1686 Google Scholar
  97. 97.
    Wyler R, de Mendoza J, Rebek J Jr (1993) Angew Chem Int Ed Engl 32:1699 Google Scholar
  98. 98.
    Cha X, Ariga K, Onda M, Kunitake T (1995) J Am Chem Soc 117:11833 Google Scholar
  99. 99.
    Schneider H-J, Ruf D (1990) Angew Chem Int Ed Engl 29:1159 Google Scholar
  100. 100.
    Kobuke Y, Sumida Y, Hayashi M, Ogoshi H (1991) Angew Chem Int Ed Engl 30:1496 Google Scholar
  101. 101.
    Schwabacher AW, Lee J, Lei H (1992) J Am Chem Soc 114:7597 Google Scholar
  102. 102.
    Hunter CA, Sarson LD (1994) Angew Chem Int Ed Engl 33:2313 Google Scholar
  103. 103.
    Goodman MS, Weiss J, Hamilton AD (1994) Tetrahedron Lett 35:8943 Google Scholar
  104. 104.
    Prévot-Halter I, Smith TJ, Weiss J (1996) Tetrahedron Lett 37:1201 Google Scholar
  105. 105.
    Habata Y, Bradshaw JS, Zhang XX, Izatt RM (1997) J Am Chem Soc 119:7145 Google Scholar
  106. 106.
    Linton B, Hamilton AD (1997) Chem Rev 97:1669 Google Scholar
  107. 107.
    Goodman MS, Jubian V, Linton B, Hamilton AD (1995) J Am Chem Soc 117:11610 Google Scholar
  108. 108.
    Huc I, Krische MJ, Funeriu DP, Lehn J-M (1999) Eur J Inorg Chem 1415 Google Scholar
  109. 109.
    Haino T, Yamanaka Y, Araki H, Fukazawa Y (2002) Chem Commun 402 Google Scholar
  110. 110.
    Ayabe M, Ikeda A, Shinkai S, Sakamoto S, Yamaguchi K (2002) Chem Commun 1032 Google Scholar
  111. 111.
    Crowley JD, Gosche AJ, Bosnich B (2003) Chem Commun 392 Google Scholar
  112. 112.
    Tobey SL, Jones BD, Anslyn EV (2003) J Am Chem Soc 125:4026 Google Scholar
  113. 113.
    Saji T, Kinoshita I (1986) J Chem Soc Chem Commun 716 Google Scholar
  114. 114.
    Medina JC, Li C, Bott SG, Atwood JL, Gokel GW (1991) J Am Chem Soc 113:366 Google Scholar
  115. 115.
    Medina JC, Goodnow TT, Rojas MT, Atwood JL, Lynn BC, Kaifer AE, Gokel GW (1992) J Am Chem Soc 114:10583 Google Scholar
  116. 116.
    Beer PD (1996) J Chem Soc Chem Commun 689 Google Scholar
  117. 117.
    Beer PD, Graydon AR, Johnson AOM, Smith DK (1997) Inorg Chem 36:2112 Google Scholar
  118. 118.
    Li C, Medina JC, Maguire GEM, Abel E, Atwood JL, Gokel GW (1997) J Am Chem Soc 119:1609 Google Scholar
  119. 119.
    Carr JD, Lambert L, Hibbs DE, Hursthouse MB, Malik KMA, Tucker JHR (1997) Chem Commun 1649 Google Scholar
  120. 120.
    Carr JD, Coles SJ, Hursthouse MB, Light ME, Tucker JHR, Westwood J (2000) Angew Chem Int Ed 39:3296 Google Scholar
  121. 121.
    Ori A, Shinkai S (1995) J Chem Soc Chem Commun 1771 Google Scholar
  122. 122.
    Laurent P, Miyaji H, Collinson SR, Prokeš I, Moody CJ, Tucker JHR, Slawin AMZ (2002) Org Lett 4:4037 Google Scholar
  123. 123.
    Page CC, Moser CC, Chen XX, Dutton PL (1999) Nature 402:47 Google Scholar
  124. 124.
    Beratan DN, Onuchic JN, Winkler JR, Gray HB (1992) Science 258:1740 Google Scholar
  125. 125.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Science 254:1497 Google Scholar
  126. 126.
    Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) Nature 365:566 Google Scholar
  127. 127.
    Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B (1994) Nature 368:561 Google Scholar
  128. 128.
    Nielsen PE, Haaima G (1997) Chem Soc Rev 96:73 Google Scholar
  129. 129.
    Kuwahara M, Arimitsu M, Sisido M (1999) J Am Chem Soc 121:256 Google Scholar
  130. 130.
    Nielsen PE (1999) Acc Chem Res 32:624 Google Scholar
  131. 131.
    Seitz O, Bergmann F, Heindl D (1999) Angew Chem Int Ed 38:2203 Google Scholar
  132. 132.
    Schütz R, Cantin M, Roberts C, Greiner B, Uhlmann E, Leumann C (2000) Angew Chem Int Ed 39:1250 Google Scholar
  133. 133.
    Kozlov IA, Orgel LE, Nielsen PE (2000) Angew Chem Int Ed 39:4292 Google Scholar
  134. 134.
    Wilhelmsson LM, Holmén A, Lincoln P, Nielsen PE, Nordén B (2001) J Am Chem Soc 123:2434 Google Scholar
  135. 135.
    Vilaivan T, Lowe G (2002) J Am Chem Soc 124:9326 Google Scholar
  136. 136.
    Okamoto A, Tanabe K, Saito I (2002) J Am Chem Soc 124:10262 Google Scholar
  137. 137.
    Cichon MK, Haas CH, Grolle F, Mees A, Carell T (2002) J Am Chem Soc 124:13984 Google Scholar
  138. 138.
    Popescu D-L, Parolin TJ, Achim C (2003) J Am Chem Soc 125:6354 Google Scholar
  139. 139.
    Zelder FH, Brunner J, Krämer R (2004) Chem Commun 902 Google Scholar
  140. 140.
    Krishnan-Ghosh Y, Stephens E, Balasubramanian S (2004) J Am Chem Soc 126:5944 Google Scholar
  141. 141.
    Mokhir A, Krämer R, Wolf H (2004) J Am Chem Soc 126:6208 Google Scholar
  142. 142.
    Moriuchi T, Yoshida K, Hirao T (2003) Org Lett 5:4285 Google Scholar
  143. 143.
    Moriuchi T, Yoshida K, Hirao T (2003) J Organomet Chem 668:31 Google Scholar
  144. 144.
    Gallagher JF, Kenny PTM, Sheehy MJ (1999) Inorg Chem Commun 2:327 Google Scholar
  145. 145.
    Carter JC, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901 Google Scholar
  146. 146.
    Saweczko P, Kraatz H-B (1999) Coord Chem Rev 190–192:185 Google Scholar
  147. 147.
    Plumb K, Kraatz H-B (2003) Bioconjug Chem 14:601 Google Scholar
  148. 148.
    Schmitt JD, Sansom MSP, Kerr ID, Lunt GG, Eisenthal R (1997) Biochemistry 36:1115 Google Scholar
  149. 149.
    Galka MM, Kraatz H-B (2002) ChemPhysChem 4:356 Google Scholar
  150. 150.
    Morita T, Kimura S (2003) J Am Chem Soc 125:8732 Google Scholar
  151. 151.
    Hess A, Metzler-Nolte N (1999) Chem Commun 885 Google Scholar
  152. 152.
    Dueholm KL, Engholm M, Behrens C, Christensen L, Hansen HF, Vulpius T, Petersen KH, Berg RH, Nielsen PE, Buchardt O (1994) J Org Chem 59:5767 Google Scholar
  153. 153.
    Chen S-M, Mohan V, Kiely JS, Griffith MC, Griffey RH (1994) Tetrahedron Lett 35:5105 Google Scholar
  154. 154.
    Verheijen JC, van der Marel GA, van Boom JH, Metzler-Nolte N (2000) Bioconjug Chem 11:741 Google Scholar

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations