Skip to main content

Amphiphiles at electrified interfaces

  • Amphiphiles at Electrode Surfaces
  • Conference paper
  • First Online:
Amphiphiles at Interfaces

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 103))

Abstract

The adsorption of insoluble surfactants, spread as a monolayer at the gas-solution interface (GS), onto an electrified metal-solution (MS) interface of a gold single-crystal electrode has been investigated. A Langmuir trough converted into an electrochemical cell was employed in these studies and the adsorption of insoluble surfactants on the Au electrode surface was measured using electrochemical techniques. The results of these experiments have shown that the transfer of insoluble surfactants from GS onto the MS interface is strongly affected by the electrode potential and the transfer ratio is 1:1 only at the potential of zero charge (pzc). UV-Vis and light scattering experiments were employed to demonstrate that insoluble surfactants may be desorbed from the electrode surface at very negative potentials. The desorbed surfactants are trapped in the subsurface region in the form of aggregates, most likely micelles. When the electrode potential is changed to a value close to pzc the micelles spread back onto the electrode surface. The potential induced adsorption of micelles proceeds through a hemimicelle stage. We have shown that the shape and size of the hemimicelle may be conveniently controlled by the electrode potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller IR, Rishpon J, Tennenbaum A (1976) Bioelectrochem Bioenerg 3:528

    Article  CAS  Google Scholar 

  2. Miller IR (1981) Structural and Energetic Aspects of Charge Transport in Lipid Layers and in Biological Membranes. In: Milazzo G (ed) Topics in Biochemistry and Bioenergetics. Vol. 4. John Wiley and Sons, New York, pp 161–224

    Google Scholar 

  3. Nelson A, Benton A (1986) J Electroanal Chem 202:253

    Article  CAS  Google Scholar 

  4. Nelson A, Auffret N (1988) J Electroanal Chem 244:99

    Article  CAS  Google Scholar 

  5. Nelson A, Leermakers FAM (1990) J Electroanal Chem 278:73

    Article  CAS  Google Scholar 

  6. Leermakers FAM, Nelson A (1990) J Electroanal Chem 278:53

    Article  CAS  Google Scholar 

  7. Nelson A, Auffret N, Readman J (1988) Anal Chim Acta 207:47

    Article  CAS  Google Scholar 

  8. Nelson A, Auffret N, Borlakoglu J (1990) Biochim Biophys Acta 1021:205

    Article  CAS  Google Scholar 

  9. Nelson A (1991) J Electroanal Chem 303:221

    Article  CAS  Google Scholar 

  10. Nelson A, van Leeuwen HP (1989) J Electroanal Chem 273:183

    Article  CAS  Google Scholar 

  11. Nelson A, van Leeuwen HP (1989) J Electroanal Chem 273:201

    Article  CAS  Google Scholar 

  12. Moncelli MR, Guidelli R (1992) J Electroanal Chem 326:331

    Article  CAS  Google Scholar 

  13. Moncelli MR, Becucci L, Guidelli R (1994) Biophys J 66:1969

    Article  CAS  Google Scholar 

  14. Moncelli MR, Becucci L, Herrero R, Guidelli R (1995) J Phys Chem 99:9940

    Article  CAS  Google Scholar 

  15. Moncelli MR and Becucci L (1995) J Electroanal Chem 385:183

    Article  Google Scholar 

  16. Fujihira M, Toshinari A (1986) Chem Lett 921

    Google Scholar 

  17. ZhangX, Bard A (1989) J Amer Chem Soc 111:8098

    Article  CAS  Google Scholar 

  18. Charych D, Landau EM, Majda M (1991) J Amer Chem Soc 113:3340

    Article  CAS  Google Scholar 

  19. Widrig C, Miller CJ, Majda M (1988) J Amer Chem Soc 110:2009

    Article  CAS  Google Scholar 

  20. Belewicz R, Sawaguchi T, Chamberlin II RV, Majda M (1995) Lang 11:2256

    Article  Google Scholar 

  21. Noel J, Bizzotto D, Lipkowski J (1993) J Electroanal Chem 344:343

    Article  Google Scholar 

  22. Bizzotto D, Noël J, Lipkowski J (1993) Thin Solid Films 248:69

    Article  Google Scholar 

  23. BizzottoD, Noël JJ, Lipkowski J (1994) J Electroanal Chem 369:259

    Article  CAS  Google Scholar 

  24. Bizzotto D, McAlees A, Lipkowski J, McCrindle R (1995) Lang 11:3243

    Article  CAS  Google Scholar 

  25. Bizzotto D, Lipkowski J (1996) J Electroanal Chem 409:33

    Article  Google Scholar 

  26. Sagara T, Zamlynny V, Bizzotto D, McAlees A, McCrindle R, Lipkowski J (in preparation)

    Google Scholar 

  27. Bizzotto D (1996) Characterization of the adsorption of insoluble surfactants onto an electrified interface. PhD Dissertation, University of Guelph, Guelph, ON. 238p

    Google Scholar 

  28. Damaskin B, Petrii OA, Batrakov VV (1968) Adsorption of organic Compounds of Electrodes. Nauka, Moscow

    Google Scholar 

  29. Damaskin B, Kazarinov VE (1980) The Adsorption of Organic Molecules. In: Bockris JO'M, Conway BE, Yeager E (eds) Comprehensive Treatise of Electrochemistry, Vol. 1. Plenum Press, New York, pp 353–396

    Google Scholar 

  30. Frumkin A, Damaskin B (1967) Pure Appl Chem 15:263

    Article  CAS  Google Scholar 

  31. Lipkowski J, Nguyen van Houng C, Hinnen C, Parsons R, Chevalet J (1983) J Electroanal Chem 143:375

    Article  CAS  Google Scholar 

  32. Cadenhead DA, Kellner BMJ, Muller-Landau F (1975) Biochim Biophys Acta 382:253

    Article  CAS  Google Scholar 

  33. Cadenhead DA, Kellner BMJ, Jacobson K, Papahadjopoulos D (1977) Biochem 16:5386

    Article  CAS  Google Scholar 

  34. Waggoner AS, Stryer L (1970) Proc Natl Acad Sci USA 67:579

    Article  CAS  Google Scholar 

  35. Slavik J (1994) Fluorescent Probes in Celluar and Molecular Biology. CRC Press Inc., Boca Raton, FL, 295 pp

    Google Scholar 

  36. Haugland RP (1992) Molecular Probes. Handbook of Fluorescent Probes and Research Chemicals, 5th ed. Molecular Probes Inc., Eugene, OR, p 249

    Google Scholar 

  37. Kofman R, Garrigos R (1981) Thin Solid Films 82:73

    Article  CAS  Google Scholar 

  38. Henglein F, Lipkowski J, Kolb D (1991) J Electroanal Chem 303:245

    Article  CAS  Google Scholar 

  39. Avouris P, Demuth JE (1983) Surface Studies with Lasers. In: Aussenegg F, Leitner A, Lippitch ME (eds) Surface Studies with Lasers, Vol. 33. Springer, Berlin, pp 24–34

    Google Scholar 

  40. Sawyer WH (1988) Fluorescence spectroscopy in the study of membrane fluidity: model membrane systems. In: Methods for Studying Membrane Fluidity. Alan R Liss Inc, New York, pp 161–191

    Google Scholar 

  41. Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of Monolayer Assemblies. In: Weissberger A, Rossiter BW (eds) Physical Methods of Chemistry. Part IIIB Optical, Spectroscopic, and Radioactivity Methods, Vol. 1. Wiley-Interscience, New York, pp 577–578

    Google Scholar 

  42. Manne S, Gaub HE (1995) Science 270:1480

    Article  CAS  Google Scholar 

  43. McDermott DC, McCarney J, Thomas RK, Rennie AR (1994) J Colloid Int Sci 162:304

    Article  CAS  Google Scholar 

  44. Zutic V, Kovac S, Tomaic J, Sveltlicic V (1993) J Electroanal Chem 349:173

    Article  CAS  Google Scholar 

  45. Ivosevic N, Tomaic J, Zutic V (1994) Lang 10:2415

    Article  CAS  Google Scholar 

  46. Tien HT (1967) J Phys Chem 71:3395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Texter

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Steinkopff Verlag

About this paper

Cite this paper

Bizzotto, D., Lipkowski, J. (1991). Amphiphiles at electrified interfaces. In: Texter, J. (eds) Amphiphiles at Interfaces. Progress in Colloid & Polymer Science, vol 103. Steinkopff. https://doi.org/10.1007/3-798-51084-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-798-51084-9_23

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1084-5

  • Online ISBN: 978-3-7985-1662-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics