Advertisement

Electric birefringence and elastic and quasi-elastic light scattering investigation of the critical behavior of Triton X-100 in aqueous solution

Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 73)

Abstract

“New Trends in Colliod Science” contains the proceedings of the foundation meeting of the European Colloid and Interface Society (ECIS), October 1–3, 1986. Representatives from the major European groups working in this field contributed to the conference. The volume contains an up-to-date account of present developments in Colloid Science. The contributions cover a wide scope of subjects, and provide encouragement that structures and transport processes in dense colloidal systems can be understood on basic principles. The main subjects are include:
  • phase diagrams of new surfactant systems

  • microemulsions and their applications

  • vesicles and bilayers

  • transport properties of colloidal systems.

Abstract

Aqueous solutions of Triton X-100 have been investigated by means of elastic and quasi-elastic light scattering, viscosity, and electric birefringence in the temperature range between room temperature and critical temperature T c . The intensity of scattered light and the correlation length ξ have been found to follow power laws of (TcT)/Tc with exponents equal to those predicted by the renormalisation group theory. Nevertheless some deviations from the Kawasaki-Ferrell universal plot are noted when the correlation range increases much, close to T c . The decay and the rise of the electric birefringence show the presence of two relaxation processes. The fast relaxation process has been attributed to the individual micelles and its analysis has yielded information on the shape and dimension of the Triton X-100 micelles. The slow process which becomes predominant close to T c appears to be due to the micelles clusters, present at these temperature. It yields values of the correlation range in good agreement with those obtained from light scattering. The results show that the micelles are anisodiametric and that fluctuations of micelle concentration are anisotropic.

Key words

Electric birefringence light scattering critical phenomena non-ionic surfactant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Degiorgio V (1985) In: Degiorgio V, Corti M (eds) Physics of Amphiphile: Micelles, Microemulsions and Vesicles, North Holland, Amsterdam, p 303; Corti M, Degiorgio V (1975) Opt Comm 14:274Google Scholar
  2. 2.
    Balmbra J, Clunie J, Corkill J, Goodman J (1962) Trans Faraday Soc 58:1661; (1964) 60:979CrossRefGoogle Scholar
  3. 3.
    Corti M, Degiorgio V (1985) Phys Rev Lett 55:2005CrossRefGoogle Scholar
  4. 4.
    Degiorgio V, Piazza R, Corti M, Minero C (1985) J Chem Phys 82:1025CrossRefGoogle Scholar
  5. 5.
    Wheeler JC (1975) J Chem Phys 62:433CrossRefGoogle Scholar
  6. 6.
    Reatto L, Tan M (1984) Chem Phys Lett 108:292CrossRefGoogle Scholar
  7. 7.
    Cebula D, Ottewill R (1982) Coll & Polym Sci 260:1118CrossRefGoogle Scholar
  8. 8.
    Brown W, Johnson R, Stilbs P, Lindman B (1983) J Phys Chem 87:4548CrossRefGoogle Scholar
  9. 9.
    Ravey JC (1983) J Coll Interf Sci 94:289CrossRefGoogle Scholar
  10. 10.
    Zulauf M, Weckstrom K, Hayter JB, Degiorgio V, Corti M (1985) J Phys Chem 89:3411CrossRefGoogle Scholar
  11. 11.
    Kata T, Seimiya T (1986) J Phys Chem 90:3159CrossRefGoogle Scholar
  12. 12.
    Zana R, Weil C (1985) J Phys Lett, Paris 46L:953Google Scholar
  13. 13.
    Goulon J, Greffe JL, Oxtoby DW (1979) J Chem Phys 70:4742CrossRefGoogle Scholar
  14. 14.
    Pysuk W, Zboinsky K (1977) Chem Phys Lett 52:577CrossRefGoogle Scholar
  15. 15.
    Degiorgio V, Piazza R (1985) Phys Rev Lett 55:288CrossRefGoogle Scholar
  16. 16.
    El Seoud O, Vidotti G, Miranda O, Martins A (1980) J Coll Interf Sci 76:265CrossRefGoogle Scholar
  17. 17.
    Candau SJ, Zana R (1981) J Coll Interf Sci 84:206CrossRefGoogle Scholar
  18. 18.
    Koppel DE (1972) J Chem Phys 57:4814CrossRefGoogle Scholar
  19. 19.
    Candau SJ, Dormoy Y, Mutin PH, Debeauvais F, Guenet JM (19??) Polymer, to be publishedGoogle Scholar
  20. 20.
    Valanlikar B, Manohar C (1985) J Coll Interf Sci 108:403CrossRefGoogle Scholar
  21. 21.
    Corti M, Minero C, Degiorgio V (1984) J Phys Chem 88:309CrossRefGoogle Scholar
  22. 22.
    Wilson KG, Kogut JB (1974) Phys Report 12c:75CrossRefGoogle Scholar
  23. 23.
    Kawasaki K (1968) Phys Lett 26a:543; (1969) 30a:325Google Scholar
  24. 24.
    Kawasaki K (1970) Phys Rev 1:175C; Ann Phys N Y 61:1Google Scholar
  25. 25.
    Ferrell (1970) Phys Rev Lett 24:169CrossRefGoogle Scholar
  26. 26.
    Beysens P (1982) NATO Adv Study Ins Ser, Ser B 82, 2, 72:25Google Scholar
  27. 27.
    Benoit H (1951) Ann Phys, Paris 6:561Google Scholar
  28. 28.
    Wright A (1976) J Coll Interf Sci 55:109CrossRefGoogle Scholar
  29. 29.
    Perrin J (1936) J Phys Rad 6:1CrossRefGoogle Scholar
  30. 30.
    Corti M, Degiorgio V (1981) J Phys Chem 85:1442CrossRefGoogle Scholar
  31. 31.
    Strey R, Pakusch A (1987) In: Mittal K, Bothorel P (eds) Proceedings of the International Symposium on Surfactants in Solutions, Plenum Press, New York, in pressGoogle Scholar
  32. 32.
    Guering P, Cazabat AM (1983) J Phys Lett 44:601CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  1. 1.Laboratoire de Spectrométrie et d'Imagerie Ultrasonores, Unité associée au C.N.R.S. no 851Université Louis PasteurStrasbourg CédexFrance
  2. 2.Laboratoire des Sciences de l'Image et de la TélédétectionEcole Nationale Supérieure de Physique de StrasbourgStrasbourgFrance
  3. 3.Institut Charles Sadron (C.R.M.)C.N.R.S.StrasbourgFrance

Personalised recommendations