Advertisement

Interaction of 1:1 electrolytes with nonionic surfactants in methanol: Effect of changing the alkyl chain from a hydrocarbon to a fluorocarbon nature

Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 73)

Abstract

“New Trends in Colliod Science” contains the proceedings of the foundation meeting of the European Colloid and Interface Society (ECIS), October 1–3, 1986. Representatives from the major European groups working in this field contributed to the conference. The volume contains an up-to-date account of present developments in Colloid Science. The contributions cover a wide scope of subjects, and provide encouragement that structures and transport processes in dense colloidal systems can be understood on basic principles. The main subjects are include:
  • phase diagrams of new surfactant systems

  • microemulsions and their applications

  • vesicles and bilayers

  • transport properties of colloidal systems.

Abstract

The binding constant of 1∶1 electrolytes with a series of hydrogenated as well as fluorinated nonionic surfactants having short polyoxyethylated chains have been obtained from electric conductivity measurements. The results for the surfactants with hydrogenated alkyl chains are systematically lower than for glymes having the same number of ethyleneoxide units.

When changing the alkyl chain from a hydrocarbon to a fluorocarbon nature, the electrophilic character of the fluorine atoms is responsible for a neat decrease of the complexing ability of the surfactant molecules.

Key words

Nonionic surfactants alkali metal ions fluorinated nonionic surfactants complexing ability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu KJ (1968) Macromolecules 1:213CrossRefGoogle Scholar
  2. 2.
    Ono K, Konami H, Murakami K (1979) J Phys Chem 83:20CrossRefGoogle Scholar
  3. 3.
    Buschmann H-J (1986) Makromol Chem 187:423CrossRefGoogle Scholar
  4. 4.
    Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D (1985) Chem Rev 85:271CrossRefGoogle Scholar
  5. 5.
    Chaput G, Jeminet G, Juillard J (1975) Can J Chem 53:2240CrossRefGoogle Scholar
  6. 6.
    Dietrich B (1985) J Chem Ed 62:954CrossRefGoogle Scholar
  7. 7.
    Mathis G, Leempoel P, Ravey JC, Selve C, Delpuech J-J (1984) J Am Chem Soc 106:6162CrossRefGoogle Scholar
  8. 8.
    Selve C, Castro B, Leempoel P, Mathis G, Gartiser T, Delpuech J-J (1983) Tetrahedron 39:1313CrossRefGoogle Scholar
  9. 9.
    Burger-Guerrisi C, Tondre C (1987) J Coll Int Sci, MarchGoogle Scholar
  10. 10.
    Buschmann H-J (1985) Polyhedron 4:2039CrossRefGoogle Scholar
  11. 11.
    Lin W-H, Bailey WI, Lagow RJ (1985) J Chem Soc Chem Commun 1350Google Scholar
  12. 12.
    Früh PU, Simon W (1973) In: Peeters H (ed) Protides of the Biological Fluids, 20th Colloquium, Pergamon Press, Oxford New York, p 505Google Scholar
  13. 13.
    Frensdorf HK (1971) J Am Chem Soc 93:600CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  1. 1.Laboratoire d'Etude des Solutions Organiques et Colloïdales (L.E.S.O.C.), Unité Associée au CNRS n° 406Faculté des Sciences Université de Nancy IVandoeuvre-les-NancyFrance

Personalised recommendations