Advertisement

Q-particles: Size quantization effects in colloidal semiconductors

Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 73)

Abstract

“New Trends in Colliod Science” contains the proceedings of the foundation meeting of the European Colloid and Interface Society (ECIS), October 1–3, 1986. Representatives from the major European groups working in this field contributed to the conference. The volume contains an up-to-date account of present developments in Colloid Science. The contributions cover a wide scope of subjects, and provide encouragement that structures and transport processes in dense colloidal systems can be understood on basic principles. The main subjects are include:
  • phase diagrams of new surfactant systems

  • microemulsions and their applications

  • vesicles and bilayers

  • transport properties of colloidal systems.

Abstract

Quantum mechanical effects in colloidal particles of semiconductor materials are described (Q-particles). They are observed in the case of extremely small particles (1–10 nm). In these particles the eletronic energy levels experience a transition from semiconductor behavior to molecular behavior. The optical and photocatalytical properties of the particles change with their size in this transition range.

Key words

Q-particles fluorescence photo-catalysis inorganic colloids spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ostwald W (ed) (1915) Die Welt der vernachlässigten Dimension, l Aufl, Th Steinkopff, DresdenGoogle Scholar
  2. 2.
    Henglein A, Tausch-Treml R (1981) J Coll Interf Sci 80:84CrossRefGoogle Scholar
  3. 3.
    Henglein A (1985) In: Eicke HF (ed) Modern trends of colloid science in chemistry and biology, Birkhäuser Verlag, BaselGoogle Scholar
  4. 4.
    Brus LE (1983) J Chem Phys 79:5566; (1984) 80:4403; (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  5. 5.
    Fojtik A, Weller H, Koch U, Henglein A, Bunsenges B (1984) Phys Chem 88:969Google Scholar
  6. 6.
    Weller H, Fojtik A, Henglein A (1985) Chem Phys Lett 117:485CrossRefGoogle Scholar
  7. 7.
    Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 120:552CrossRefGoogle Scholar
  8. 8.
    Koch U, Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 122:507CrossRefGoogle Scholar
  9. 9.
    Weller H, Schmidt HM, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Chem Phys Lett 124:557CrossRefGoogle Scholar
  10. 10.
    Nedeljković JM, Nenadović MT, Mićić OI, Nozik AJ (1986) J Phys Chem 90:12CrossRefGoogle Scholar
  11. 11.
    Schmidt HM, Weller H (1986) Chem Phys Lett 129:615CrossRefGoogle Scholar
  12. 12.
    Flytzanis C, Hache F, Ricard D, Roussignol Ph (1986) In: Kelly MJ, Weisbuch C (eds) The Physics and Fabrication of Microstructures and Microdevices, Springer-Verlag, BerlinGoogle Scholar
  13. 13.
    Henglein A, Kumar A, Janata E, Weller H (1986) Chem Phys Lett 132:133CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  1. 1.Bereich StrahlenchemieHahn-Meitner-Institut für KernforschungBerlin 39Germany

Personalised recommendations