Advertisement

On the Analysis of Asymmetric Directed Communication Structures in Electronic Election Markets

  • Markus Franke
  • Andreas Geyer-Schulz
  • Bettina Hoser
Chapter
Part of the Contributions to Economics book series (CE)

Summary

In this article we introduce a new general method of representing trading structures as complex adjacency matrices and transforming these into Hermitian adjacency matrices which are linear self-adjoint operators in a Hilbert space. The main advantages of the method are that no information is lost, no arbitrary decision on metrics is involved, and that all eigenvalues are real and, therefore, easily interpretable. The analysis of the resulting eigensystem helps in the detection of substructures and general patterns. While this approach is general, we apply the method in the context of analyzing market structure and behaviour based on the eigensystem of market transaction data and we demonstrate the method by analyzing the results of a political stock exchange for the 2002 federal elections in Germany.

Keywords

Election Market Hermitian Matrice Incentive Compatibility Star Graph Double Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlemann M. (2002) Comment on Gregor Brüggelambert and Arwed Crüger, Forrest Nelson and Reinhard Tietz, and Jörg Bochow, Peter Raupach and Mark Wahrenburg: What can we learn from experimental asset markets? In: Bolle and Lehmann-Waffenschmidt [2], pp. 251–257.Google Scholar
  2. 2.
    Bolle F., Lehmann-Waffenschmidt M. (eds.) (2002) Surveys in Experimental Economics: Bargaining, Cooperation and Election Stock Markets, Contribution to Economics, Heidelberg, Physica-Verlag.Google Scholar
  3. 3.
    Brüggelambert G., Crüger A. (2002) Election markets: Experiences from a complex experiment. In: Bolle and Lehmann-Waffenschmidt [2], pp. 167–191.Google Scholar
  4. 4.
    Bundeswahlleiter (2002) ABC der Bundestagswahl 2002. Technical report, Der Bundeswahlleiter, Wiesbaden.Google Scholar
  5. 5.
    Copeland T., Weston F. (1988) Financial Theory and Corporate Policy. Addison-Wesley, Reading, 3 edition.Google Scholar
  6. 6.
    Fama, E. F. (1970) Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2):383–417.CrossRefGoogle Scholar
  7. 7.
    Fama E. F. (1976) Efficient capital markets: Reply. Journal of Finance, 31(1):143–145.CrossRefGoogle Scholar
  8. 8.
    Fama E. F. (1991) Efficient capital markets: II. Journal of Finance, 46(5):1575–1617.CrossRefGoogle Scholar
  9. 9.
    Forsythe R., Nelson F., Neumann G. R., Wright J. (1992) Anatomy of an experimental political stock market. The American Economic Review, 82(5):1142–1161.Google Scholar
  10. 10.
    Froilán J. M., Dopico M., Molera J. M. (2000) Weyl-type relative perturbation bounds for eigensystems of hermitian matrices. Linear Algebra and its Applications, 309(1):3–18.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Geyer-Schulz A. (1991) An Introduction to Financial Accounting with APL2. Technical report, ACM SIGAPL, New York, N.Y..Google Scholar
  12. 12.
    Gomber P., Schweikert U. (2002) Der Market Impact: Liquiditätsmaß im elektronischen Wertpapierhandel. Die Bank.Google Scholar
  13. 13.
    Hayek F. A. (1935) The present state of the debate. In: Hayek F. A., (ed.) Collectivist Economic Planning, pp. 201–243, London.Google Scholar
  14. 14.
    Hayek F. A. (1945) The use of knowledge in society. American Economic Review, 35:519–530.Google Scholar
  15. 15.
    Horn R., Johnson C. R. (1990) Matrix Analysis. Cambridge University Press, Cambridge.Google Scholar
  16. 16.
    Hoser B., Geyer-Schulz A. (2005) Eigenspectralanalysis of hermitian adjacency matrices for the analysis of group substructures. Journal of Mathematical Sociology. Accepted for publication.Google Scholar
  17. 17.
    Hurwicz L. (1973) The design of mechanisms for resource allocation. American Economic Review, 63(2):1–30.Google Scholar
  18. 18.
    Ipsen I. C. F. (2003) A note on unifying absolute and relative perturbation bounds. Linear Algebra and its Applications, 358:239–253.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kato T. (1995) Perturbation Theory for Linear Operators. Springer, New York, 2 edition.Google Scholar
  20. 20.
    Kleinberg J. M. (1999) Authoritative sources in a hyperlinked environment. JACM, 46(5):604–632.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Latham M. (1985) Defining capital market efficiency. Technical report, Finance Working Paper 150, Institute for Business and Economic Research, University of California, Berkeley.Google Scholar
  22. 22.
    Maddala G. S., Kim I.-M. (2001) Unit Roots, Contegration, and Structural Change. Cambridge University Press, Cambridge.Google Scholar
  23. 23.
    Meyer C. D. (2000) Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia.Google Scholar
  24. 24.
    Milgrom P., Roberts J. (1992) Economics, Organisation and Management. Prentice Hall, Upper Saddle River, 1 edition.Google Scholar
  25. 25.
    Nelson F., Tietz R. (2002) Expectations and rational actions in an experimental financial market. In Bolle and Lehmann-Waffenschmidt [2], pp. 193–227.Google Scholar
  26. 26.
    Page L., Brin S., Motwani R., Winograd T. (1998) The Page Rank Citation Ranking: Bringing Order to the Web. Technical report, Computer Science Department, Stanford University.Google Scholar
  27. 27.
    Pinches G. E., Kinney W. R. Jr. (1971) The measurement of the volatility of common stock prices. Journal of Finance, 26(1):119–125.CrossRefGoogle Scholar
  28. 28.
    Roll R. (1984) A simple implicit measure of the effective bid-ask spread in an efficient market. The Journal of Finance, 39(4):1127–1139.CrossRefGoogle Scholar
  29. 29.
    Rubinstein M. (1975) Securities market efficiency in an arrow-debreu economy. American Economic Review, 65(5):812–824.Google Scholar
  30. 30.
    Samuelson P. A. (1948) Consumption theory in terms of revealed preference. Economica, 15(60):243–253.CrossRefGoogle Scholar
  31. 31.
    Shubik M. (1980) Market Structure and Behavior. Harvard University Press, Cambridge.Google Scholar
  32. 32.
    Simon H. A. (2000) Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations. Free Press, New York, 4 edition.Google Scholar
  33. 33.
    Smith V. L. (1976) Experimental economics: Induced value theory. American Economic Review, 66(2):274–279.Google Scholar
  34. 34.
    Spann M., Skiera B. (2003) Internet-based virtual stock markets for business forecasting. Management Science, 49(10):1310–1326.CrossRefGoogle Scholar
  35. 35.
    Spann M., Skiera B. (2004) Einsatzmöglichkeiten virtueller Börsen in der Marktforschung. ZfB — Zeitschrift für Betriebswirtschaft (Ergänzungsheft), (2):25–48.Google Scholar
  36. 36.
    Jaffe J., Ross S. A., Westerfield R. W. (2005) Corporate Finance. McGraw Hill, Boston, 7 edition.Google Scholar
  37. 37.
    Stone M. H. (1932) Linear Transformations in Hilbert Space and their Applications to Analysis, Vol. 15 of American Mathematical Society, Colloquium Publications. American Mathematical Society, New York.Google Scholar
  38. 38.
    Wasserman K., Faust S. (1994) Social Network Analysis, Methods and Applications. Cambridge University Press, Cambridge.Google Scholar
  39. 39.
    Wellman B. (2001) Computer networks as social networks. Science, 293:2031–2034.PubMedCrossRefADSGoogle Scholar
  40. 40.
    Wolfram Research Inc. (1999) Mathematica. Urbana-Champaign, Illinois, version 4 edition.Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2006

Authors and Affiliations

  • Markus Franke
    • 1
  • Andreas Geyer-Schulz
    • 1
  • Bettina Hoser
    • 1
  1. 1.Information Services and Electronic MarketsUniversity of KarlsruheGermany

Personalised recommendations