Skip to main content

Can Damage Mechanics Explain Temporal Scaling Laws in Brittle Fracture and Seismicity?

  • Chapter

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Time delays associated with processes leading to a failure or stress relaxation in materials and earthquakes are studied in terms of continuum damage mechanics. Damage mechanics is a quasiempirical approach that describes inelastic irreversible phenomena in the deformation of solids. When a rock sample is loaded, there is generally a time delay before the rock fails. This period is characterized by the occurrence and coalescence of microcracks which radiate acoustic signals of broad amplitudes. These acoustic emission events have been shown to exhibit power-law scaling as they increase in intensity prior to a rupture. In case of seismogenic processes in the Earth’s brittle crust, all earthquakes are followed by an aftershock sequence. A universal feature of aftershocks is that their rate decays in time according to the modified Omori’s law, a power-law decay. In this paper a model of continuum damage mechanics in which damage (microcracking) starts to develop when the applied stress exceeds a prescribed yield stress (a material parameter) is introduced to explain both laboratory experiments and systematic temporal variations in seismicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anifrani, J.C., Lefloch, C., Sornette, D., and Souillard, B. (1995), Universal log-periodic correction to renormalization-group scaling for rupture stress prediction from acoustic emissions, J. Phys. I 5, 631–638.

    Article  Google Scholar 

  • Ben-zion, Y. and Lyakhovsky, V. (2002), Accelerated seismic release and related aspects of seismicity patterns on earthquake faults, Pure Appl. Geophys. 159, 2385–2412.

    Article  Google Scholar 

  • Bowman, D.D. and King, G.C.P. (2001), Accelerating seismicity and stress accumulation before large earthquakes, Geophys. Res. Lett. 28, 4039–4042.

    Article  Google Scholar 

  • bowman, d.d., ouillon, g., sammis, c.g., sornette, a., and sornette, d. (1998), an observational test of the critical earthquake concept, j. geophys. res. 103, 24359–24372.

    Article  Google Scholar 

  • Bowman, D.D. and Sammis, C.G. (2004), Intermittent criticality and the Gutenberg-Richter distribution, Pure Appl. Geophys. 161, 1945–1956.

    Article  Google Scholar 

  • Brehm, D.J. and Braile, L.W. (1998), Intermediate-term earthquake prediction using precursory events in the New Madrid seismic zone, Bull. Seismol. Soc. Am. 88, 564–580.

    Google Scholar 

  • Brehm, D.J. and Braile, L.W. (1999a), Intermediate-term earthquake prediction using the modified time-to-failure method in Southern California, Bull. Seismol. Soc. Am. 89, 275–293.

    Google Scholar 

  • Brehm, D.J. and Braile, L.W. (1999b), Refinement of the modified time-to-failure method for intermediate-term earthquake prediction, J. Seismol. 3, 121–138.

    Article  Google Scholar 

  • Bufe, C.G., Nishenko, S.P., and Varnes, D.J. (1994), Seismicity trends and potential for large earthquakes in the Alaska-Aleutian region, Pure Appl. Geophys. 142, 83–99.

    Article  Google Scholar 

  • Bufe, C.G. and Varnes, D.J. (1993), Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res. 98, 9871–9883.

    Google Scholar 

  • Ciliberto, S., Guarino, A., and Scorretti, R. (2001), The effect of disorder on the fracture nucleation process, Physica D 158, 83–104.

    Article  Google Scholar 

  • Coleman, B.D. (1957), Time dependence of mechanical breakdown in bundles of fibers. I Constant total load, J. Appl. Phys. 28, 1058–1064.

    Article  Google Scholar 

  • Coleman, B.D. (1958), Statistics and time dependence of mechanical breakdown in fibers, J.Appl. Phys. 29, 968–983.

    Article  Google Scholar 

  • Das, S. and Scholz, C.H. (1981), Theory of time-dependent rupture in the Earth, J. Geophys. Res. 86, 6039–6051.

    Google Scholar 

  • Freund, L.B., Dynamic Fracture Mechanics (Cambridge University Press, Cambridge 1990).

    Google Scholar 

  • Gluzman, S. and Sornette, D. (2001), Self-consistent theory of rupture by progressive diffuse damage, Phys. Rev. E 6306, Art. No. 066129.

    Google Scholar 

  • Guarino, A., Ciliberto, S., and Garcimartin, A. (1999), Failure time and microcrack nucleation, Europhys. Lett. 47, 456–461.

    Article  Google Scholar 

  • Guarino, A., Ciliberto, S., Garcimartin, A., Zei, M., and Scorretti, R. (2002), Failure time and critical behaviour of fracture precursors in heterogeneous materials, Eur. Phys. J. B 26, 141–151.

    Article  Google Scholar 

  • Guarino, A., Garcimartin, A., and Ciliberto, S. (1998), An experimental test of the critical behaviour of fracture precursors, Eur. Phys. J. B 6, 13–24.

    Article  Google Scholar 

  • Hild, F., Discrete versus continuum damage mechanics: A probabilistic perspective. In Continuum Damage Mechanics of Materials and Structures (O. Allix, F. Hild eds.) (Elsevier, Amsterdam 2002), pp. 79–114.

    Google Scholar 

  • Hirata, T. (1987), Omori’s power law aftershock sequences of microfracturing in rock fracture experiment, J. Geophys. Res. 92, 6215–6221.

    Article  Google Scholar 

  • Hirata, T., Satoh, T., and Ito, K. (1987), Fractal structure of spatial-distribution of microfracturing in rock, Geophys. J. R. Astr. Soc. 90, 369–374.

    Google Scholar 

  • Jaumé, S.C. and Sykes, L.R. (1999), Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys. 155, 279–305.

    Article  Google Scholar 

  • Johansen, A. and Sornette, D. (2000), Critical ruptures, Eur. Phys. J. B 18, 163–181.

    Article  Google Scholar 

  • Kachanov, L.M.Introduction to Continuum Damage Mechanics (Martinus Nijhoff, Dordrecht 1986).

    Google Scholar 

  • Kachanov, M. (1994), On the concept of damage in creep and in the brittle-elastic range, Int. J. Damage Mech. 3, 329–337.

    Google Scholar 

  • Kattan, P.I. and Voyiadjis, G.Z.Damage Mechanics with Finite Elements: Practical Applications with Computer Tools (Springer, Berlin 2002).

    Google Scholar 

  • King, G.C.P. and Bowman, D.D. (2003), The evolution of regional seismicity between large earthquakes, J. Geophys. Res. 108, 2096.

    Article  Google Scholar 

  • Knopoff, L., Levshina, T., Keilis-Borok, V.I., and Mattoni, C. (1996), Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California, J. Geophys. Res. 101, 5779–5796.

    Article  Google Scholar 

  • Krajcinovic, D. (1989), Damage mechanics, Mech. Mater. 8, 117–197.

    Article  Google Scholar 

  • Krajcinovic, D.Damage Mechanics (Elsevier, Amsterdam 1996).

    Google Scholar 

  • Lockner, D. (1993), The role of acoustic-emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. 30, 883–899.

    Article  Google Scholar 

  • Lockner, D.A., Byerlee, J.D., Kuksenko, J.D., Ponomarev, V., and Sidorin, A.Observations of quasistatic fault growth from acoustic emissions. In Fault Mechanics and Transport Properties of Rocks (Academic Press, London 1992), pp. 3–31.

    Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2001), Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere, J. Geophys. Res. 106, 4103–4120.

    Article  Google Scholar 

  • Lyakhovsky, V., Benzion, Y., and Agnon, A. (1997), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27635–27649.

    Article  Google Scholar 

  • Main, I.G. (1999), Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions, Geophys. J. Int. 139, F1–F6.

    Article  Google Scholar 

  • Mogi, K. (1962), Study of elastic shocks caused by the fracture of hetergeneous materials and its relations to earthquake phenomena, Bull. Earthquake Res. Inst. 40, 125–173.

    Google Scholar 

  • Newman, W.I. and Phoenix, S.L. (2001), Time-dependent fiber bundles with local load sharing, Phys. Rev. E 6302, Art. No. 021507.

    Google Scholar 

  • Robinson, R. (2000), A test of the precursory accelerating moment release model on some recent New Zealand earthquakes, Geophys. J. Int. 140, 568–576.

    Article  Google Scholar 

  • Rundle, J., Klein, W., Turcotte, D.L., and Malamud, B.D. (2000), Precursory seismic activation and critical-point phenomena, Pure Appl. Geophys. 157, 2165–2182.

    Article  Google Scholar 

  • Sammis, C.G., Bowman, D.D., and King, G. (2004), Anomalous seismicity and accelerating moment release preceding the 2001 and 2002 earthquakes in northern Baja California, Mexico, Pure Appl. Geophys. 161, 2369–2378.

    Article  Google Scholar 

  • SCHOLZ, C.H., The Mechanics of Earthquakes and Faulting (Cambridge University Press, Cambridge 2002), 2nd ed.

    Google Scholar 

  • Scorretti, R., Ciliberto, S., and Guarino, A. (2001), Disorder enhances the effects of thermal noise in the fiber bundle model, Europhys. Lett. 55, 626–632.

    Article  Google Scholar 

  • Shcherbakov, R. and Turcotte, D.L. (2003), Damage and self-similarity in fracture, Theor. Appl. Frac. Mech. 39, 245–258.

    Article  Google Scholar 

  • Shcherbakov, R., Turcotte, D.L., and Rundle, J.B. (2004), A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett. 31, Art. No. L11613.

    Google Scholar 

  • Shcherbakov, R., Turcotte, D.L., and Rundle, J.B. (2005), Aftershock statistics, Pure Appl. Geophys. 162, 1051–1076.

    Article  Google Scholar 

  • Smith, R.L. and Phoenix, S.L. (1981), Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing, J. Appl. Mech. 48, 75–82.

    Article  Google Scholar 

  • Sornette, D. and Andersen, J.V. (1998), Scaling with respect to disorder in time-to-failure, Eur. Phys. J. B 1, 353–357.

    Article  Google Scholar 

  • Sykes, L.R. and Jaumé, S.C. (1990), Seismic activity on neighboring faults as a long-term precursor to large earthquakes in the San Francisco Bay area, Nature 348, 595–599.

    Article  Google Scholar 

  • Turcotte, D.L., Newman, W.I., and Shcherbakov, R. (2003), Micro and macroscopic models of rock fracture, Geophys. J. Int. 152, 718–728.

    Article  Google Scholar 

  • Utsu, T., Ogata, Y., and Matsu’ura, R.S. (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1–33.

    Google Scholar 

  • Varnes, D.J. and Bufe, C.G. (1996), The cyclic and fractal seismic series preceding an mb 4:8 earthquake on 1980 February 14 near the Virgin Islands, Geophys. J. Int. 124, 149–158.

    Google Scholar 

  • Yang, W.Z., Vere-Jones, D., and Li, M. (2001), A proposed method for locating the critical region of a future earthquake using the critical earthquake concept, J. Geophys. Res. 106, 4121–4128.

    Article  Google Scholar 

  • Zöller, G., Hainzl, S., and Kurths, J. (2001), Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res. 106, 2167–2175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Turcote, D.L., Shcherbakov, R. (2006). Can Damage Mechanics Explain Temporal Scaling Laws in Brittle Fracture and Seismicity?. In: Dresen, G., Zang, A., Stephansson, O. (eds) Rock Damage and Fluid Transport, Part I. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7712-7_7

Download citation

Publish with us

Policies and ethics