Salt effect on growth, photosynthesis, seed yield and oil composition of the potential crop halophyte Cakile maritima

  • Ahmed Debez
  • Wael Taamalli
  • Dhouha Saadaoui
  • Zeineb Ouerghi
  • Mokhtar Zarrouk
  • Bernhard Huchzermeyer
  • Chedly Abdelly


Salinity is an extending environmental issue which compromises the long-term sustainability of agriculture, especially in the coastal semi-arid areas [1]. This is the case in Tunisia, where the semi-arid Mediterranean climate prevails (mean annual precipitation of 200–700 mm). Subsequently, around 10% of the whole territory would be salt-affected [2]. Halophytes have evolved a wide range of attributes (morphological, physiological and biochemical) allowing them to tolerate the presence of salt in the medium [3]. Besides, several studies suggest that these plants are potentially useful for ecological and economical purposes [4].


Salt Stress ATPase Activity Salt Tolerance Seed Yield Erucic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horie T, Schroeder JI (2004) Sodium transporters in Plants. Diverse genes and physiological functions. Plant Physiol 136: 2457–2462PubMedCrossRefGoogle Scholar
  2. 2.
    Hachicha M, Job JO, Mtimet A (1994) Les sols salés et la salinisation en Tunisie. Sols de Tunisie 5: 271–341Google Scholar
  3. 3.
    Glenn E, Brown JJ, Blumwald E (1999) Salt-tolerant mechanism and crop potential of halophytes. Crit Rev Plant Sci 18: 227–255CrossRefGoogle Scholar
  4. 4.
    Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065–1067CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66–71PubMedCrossRefGoogle Scholar
  6. 6.
    Aharon GS, Apse MP, Duan S, Hua X, Blumwald E (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil 253: 245–256CrossRefGoogle Scholar
  7. 7.
    Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  8. 8.
    Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49: 69–76CrossRefGoogle Scholar
  9. 9.
    Abdelly C, Lachaâl M, Grignon C, Soltani A, Hajji M (1995) Association épisodique d’halophytes strictes et de glycophytes dans un écosystème hydromorphe salé en zone semiaride. Agronomie 15: 557–568Google Scholar
  10. 10.
    Sato FK, Nishida K, Yamada Y (1980) Activities of carboxylation enzymes and products of 14CO2 fixation in photoautotrophically cultured cells. Plant Sci Lett 20: 91–97CrossRefGoogle Scholar
  11. 11.
    Koyro H-W, Stelzer R, Huchzermeyer B (1993) ATPase activities and membrane fine structure of rhizodermal cells from Sorghum and Spartina roots grown under mild salt stress. Bot Acta 106: 110–119Google Scholar
  12. 12.
    Allen C, Good P (1971)Acyl lipids in photosynthetic systems. Methods in Enz 23: 523–547CrossRefGoogle Scholar
  13. 13.
    Mangold HK (1964) Thin layer chromatography of lipids. JAOCS 47: 726–773Google Scholar
  14. 14.
    Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137: 131–142CrossRefGoogle Scholar
  15. 15.
    Short DC, Colmer TD (1999) Salt tolerance in the halophyte Haloscaria pergranulata subsp. pergranulata. Ann Bot 83: 207–213CrossRefGoogle Scholar
  16. 16.
    Véry A-A, Robinson MF, Mansfield TA, Sanders D (1998) Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J 14: 509–521CrossRefGoogle Scholar
  17. 17.
    Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  18. 18.
    Venema K, Belver A, Marin-Manzano MC, Rodriguez-Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278: 22453–22459PubMedCrossRefGoogle Scholar
  19. 19.
    Khatun S, Flowers TJ (1995) The estimation of pollen viability in rice. J Exp Bot 46:151–154CrossRefGoogle Scholar
  20. 20.
    Dierig DA, Grieve CM, Shannon MC (2003) Selection for salt tolerance in Lesquerella fendleri (Gray) S. Wats. Indust Crops Prod 17: 15–22CrossRefGoogle Scholar
  21. 21.
    Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21: 267–272CrossRefGoogle Scholar
  22. 22.
    Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269: 5625–5631PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Ahmed Debez
    • 1
  • Wael Taamalli
    • 2
  • Dhouha Saadaoui
    • 1
  • Zeineb Ouerghi
    • 1
  • Mokhtar Zarrouk
    • 2
  • Bernhard Huchzermeyer
    • 3
  • Chedly Abdelly
    • 1
  1. 1.Laboratoire d’Adaptation des Plantes aux Stress AbiotiquesINRSTHammam-LifTunisia
  2. 2.Laboratoire de Caractérisation et Qualité de l’Huile d’OliveINRSTHammam-LifTunisia
  3. 3.Institut für BotanikUniversität HannoverHannoverGermany

Personalised recommendations