Skip to main content

Clément Interpolation and Its Role in Adaptive Finite Element Error Control

  • Chapter

Part of the Operator Theory: Advances and Applications book series (OT,volume 168)

Abstract

Several approximation operators followed Philippe Clément’s seminal paper in 1975 and are hence known as Clément-type interpolation operators, weak-, or quasi-interpolation operators. Those operators map some Sobolev space VW k,p(Ω) onto some finite element space V hW k,p(Ω) and generalize nodal interpolation operators whenever W k,p(Ω) ⊄ C 0(Ω), i.e., when pn/k for a bounded Lipschitz domain Ω ⊂ ℝn. The original motivation was H 2C 0(Ω) for higher dimensions n ≥ 4 and hence nodal interpolation is not well defined.

Todays main use of the approximation operators is for a reliability proof in a posteriori error control. The survey reports on the class of Clément type interpolation operators, its use in a posteriori finite element error control and for coarsening in adaptive mesh design.

Keywords

  • Posteriori Error
  • Error Control
  • Posteriori Error Estimation
  • Interpolation Operator
  • Dual Norm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

In honor of the retirement of Philippe Clàment.

The author is supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M. and Oden, J.T. (2000). A posteriori error estimation in finite element analysis. Wiley-Interscience [John Wiley & Sons], New York. xx+240.

    MATH  Google Scholar 

  2. Babuška I. and Miller A. (1987) A feedback finite element method with a posteriori error estimation. I. The finite element method and some properties of the a posteriori estimator. Comp. Methods Appl. Mech. Engrg., 61,1, 1–40.

    CrossRef  Google Scholar 

  3. Babuška, I. and Strouboulis, T. (2001). The finite element method and its reliability. The Clarendon Press Oxford University Press, New York, xii+802.

    Google Scholar 

  4. Bangerth, W. and Rannacher, R. (2003). Adaptive finite element methods for differential equations. (Lectures in Mathematics ETH Zürich) Birkhäuser Verlag, Basel, viii+207.

    MATH  Google Scholar 

  5. Bank, R.E. and Weiser, A. (1985). Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44,170, 283–301.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Becker, R. and Rannacher, R. (1996). A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math, 4,4, 237–264.

    MATH  MathSciNet  Google Scholar 

  7. Becker, R. and Rannacher, R. (2001). An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, 2001, 1–102.

    Google Scholar 

  8. Binev, P., Dahmen, W. and DeVore, R. (2004). Adaptive finite element methods with convergence rates. Numer. Math., 97,2, 219–268.

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Carstensen, C. (1999). Quasi-interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal., 33,6, 1187–1202.

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Carstensen, C. (2004). Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM Z. Angew. Math. Mech., 84,1, 3–21.

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Carstensen C. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comp. 73 (2004) 1153–1165.

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Carstensen, C. (2006). On the Convergence of Adaptive FEM for Convex Minimization Problems (in preparation).

    Google Scholar 

  13. Carstensen, C., Bartels, S. and Klose, R. (2001). An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math., 15,1–4, 79–106.

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Carstensen, C. and Funken, S.A. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8(3) (2000) 153–175.

    MATH  MathSciNet  Google Scholar 

  15. Carstensen, C. and Funken, S.A. Fully reliable localised error control in the FEM. SIAM J. Sci. Comp. 21(4) (2000) 1465–1484.

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Carstensen, C. and Verfürth, R. (1999). Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36,5, 1571–1587.

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland, 1978. (reprinted in the Classics in Applied Mathematics Series, SIAM, 2002)

    Google Scholar 

  18. Clément, P. (1975). Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9,R-2, 77–84.

    MATH  Google Scholar 

  19. Eriksson, K. and Johnson, C. (1991). Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal., 28,1, 43–77.

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1995). Introduction to adaptive methods for differential equations. Acta Numerica, 1995, Cambridge Univ. Press, Cambridge, 105–158.

    Google Scholar 

  21. Ladevèze, P. and Leguillon, D. (1983). Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20,3, 485–509.

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Nochetto, R.H. (1993). Removing the saturation assumption in a posteriori error analysis. Istit. Lombardo Accad. Sci. Lett. Rend. A, 127,1, 67–82 (1994).

    MathSciNet  Google Scholar 

  23. Rodriguez, R. (1994). Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations, 10,5, 625–635.

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Rodríguez, R. (1994). A posteriori error analysis in the finite element method. (Finite element methods (Jyväskylä, 1993)). Lecture Notes in Pure and Appl. Math., Dekker, New York, 164, 389–397.

    Google Scholar 

  25. Scott, L.R. and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54,190, 483–493.

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Verfürth, R. (1996). A review of a posteriori error estimation and adaptive meshrefinement techniques, Wiley-Teubner.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Carstensen, C. (2006). Clément Interpolation and Its Role in Adaptive Finite Element Error Control. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7601-5_2

Download citation