Abstract
Several approximation operators followed Philippe Clément’s seminal paper in 1975 and are hence known as Clément-type interpolation operators, weak-, or quasi-interpolation operators. Those operators map some Sobolev space V ⊂ W k,p(Ω) onto some finite element space V h ⊂ W k,p(Ω) and generalize nodal interpolation operators whenever W k,p(Ω) ⊄ C 0(Ω), i.e., when p ≤ n/k for a bounded Lipschitz domain Ω ⊂ ℝn. The original motivation was H 2 ⊄ C 0(Ω) for higher dimensions n ≥ 4 and hence nodal interpolation is not well defined.
Todays main use of the approximation operators is for a reliability proof in a posteriori error control. The survey reports on the class of Clément type interpolation operators, its use in a posteriori finite element error control and for coarsening in adaptive mesh design.
Keywords
- Posteriori Error
- Error Control
- Posteriori Error Estimation
- Interpolation Operator
- Dual Norm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
In honor of the retirement of Philippe Clàment.
The author is supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Ainsworth, M. and Oden, J.T. (2000). A posteriori error estimation in finite element analysis. Wiley-Interscience [John Wiley & Sons], New York. xx+240.
Babuška I. and Miller A. (1987) A feedback finite element method with a posteriori error estimation. I. The finite element method and some properties of the a posteriori estimator. Comp. Methods Appl. Mech. Engrg., 61,1, 1–40.
Babuška, I. and Strouboulis, T. (2001). The finite element method and its reliability. The Clarendon Press Oxford University Press, New York, xii+802.
Bangerth, W. and Rannacher, R. (2003). Adaptive finite element methods for differential equations. (Lectures in Mathematics ETH Zürich) Birkhäuser Verlag, Basel, viii+207.
Bank, R.E. and Weiser, A. (1985). Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44,170, 283–301.
Becker, R. and Rannacher, R. (1996). A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math, 4,4, 237–264.
Becker, R. and Rannacher, R. (2001). An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, 2001, 1–102.
Binev, P., Dahmen, W. and DeVore, R. (2004). Adaptive finite element methods with convergence rates. Numer. Math., 97,2, 219–268.
Carstensen, C. (1999). Quasi-interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal., 33,6, 1187–1202.
Carstensen, C. (2004). Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM Z. Angew. Math. Mech., 84,1, 3–21.
Carstensen C. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comp. 73 (2004) 1153–1165.
Carstensen, C. (2006). On the Convergence of Adaptive FEM for Convex Minimization Problems (in preparation).
Carstensen, C., Bartels, S. and Klose, R. (2001). An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math., 15,1–4, 79–106.
Carstensen, C. and Funken, S.A. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8(3) (2000) 153–175.
Carstensen, C. and Funken, S.A. Fully reliable localised error control in the FEM. SIAM J. Sci. Comp. 21(4) (2000) 1465–1484.
Carstensen, C. and Verfürth, R. (1999). Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36,5, 1571–1587.
Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland, 1978. (reprinted in the Classics in Applied Mathematics Series, SIAM, 2002)
Clément, P. (1975). Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9,R-2, 77–84.
Eriksson, K. and Johnson, C. (1991). Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal., 28,1, 43–77.
Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1995). Introduction to adaptive methods for differential equations. Acta Numerica, 1995, Cambridge Univ. Press, Cambridge, 105–158.
Ladevèze, P. and Leguillon, D. (1983). Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20,3, 485–509.
Nochetto, R.H. (1993). Removing the saturation assumption in a posteriori error analysis. Istit. Lombardo Accad. Sci. Lett. Rend. A, 127,1, 67–82 (1994).
Rodriguez, R. (1994). Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations, 10,5, 625–635.
Rodríguez, R. (1994). A posteriori error analysis in the finite element method. (Finite element methods (Jyväskylä, 1993)). Lecture Notes in Pure and Appl. Math., Dekker, New York, 164, 389–397.
Scott, L.R. and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54,190, 483–493.
Verfürth, R. (1996). A review of a posteriori error estimation and adaptive meshrefinement techniques, Wiley-Teubner.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Birkhäuser Verlag Basel/Switzerland
About this chapter
Cite this chapter
Carstensen, C. (2006). Clément Interpolation and Its Role in Adaptive Finite Element Error Control. In: Koelink, E., van Neerven, J., de Pagter, B., Sweers, G., Luger, A., Woracek, H. (eds) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol 168. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7601-5_2
Download citation
DOI: https://doi.org/10.1007/3-7643-7601-5_2
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-7600-0
Online ISBN: 978-3-7643-7601-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)