Skip to main content

Erythropoietin receptor signaling processes

  • Chapter
Erythropoietins and Erythropoiesis

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 671 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83: 59–67

    CAS  PubMed  Google Scholar 

  2. Kieran MW, Perkins AC, Orkin SH, Zon LL (1996) Thromobopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci USA 93: 9126–9131

    Article  CAS  PubMed  Google Scholar 

  3. Lin CS, Lim SK, D’Agati V, Costantini F (1996) Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 10: 154–164

    CAS  PubMed  Google Scholar 

  4. Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC et al. (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129: 505–516

    CAS  PubMed  Google Scholar 

  5. Digicayliogulu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412: 641–647

    Google Scholar 

  6. Goldman SA, Nedergaard M (2002) Erythropoietin strikes a new cord. Nat Med 8: 785–787

    Article  CAS  PubMed  Google Scholar 

  7. Ogilivie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 275: 39754–39761

    Google Scholar 

  8. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93: 2627–2636

    CAS  PubMed  Google Scholar 

  9. Yasuda Y, Fujita Y, Musha T, Tanaka H, Shiokawa S, Nakamatsu K, Mori S, Matsuo T, Nakamura Y (2001) Expression or erythropoietin in human female reproductive organs. Ital J Anat Embryol 106: 215–222

    CAS  PubMed  Google Scholar 

  10. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98: 4044–4049

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki N, Ohneda O, Takahashi S, Higuchi M, Mukai HY, Nakahata T, Imagawa S, Yamamoto M (2002) Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100: 2279–2288

    Article  CAS  PubMed  Google Scholar 

  12. Elliott S, Lorenzini T, Yanagihara D, Chang D, Elliott G (1996) Activation of the erythropoietin (EPO) receptor by bivalent anti-EPO receptor antibodies. J Biol Chem 271: 24691–24697

    CAS  PubMed  Google Scholar 

  13. Wrighton NC, Balasubramanian P, Barbone FP, Kashyap AK, Farrell FX, Jolliffe LK, Barrett RW, Dower WJ (1997) Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nat Biotechnol 15: 1261–1265

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura A, Longmore G, Lodish HF (1990) Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348: 647–649

    Article  CAS  PubMed  Google Scholar 

  15. Watowich SS, Yoshimura A, Longmore GD, Hilton DJ, Yoshimura Y, Lodish HF (1992) Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci USA 89: 2140–2144

    CAS  PubMed  Google Scholar 

  16. Watowich SS, Hilton DJ, Lodish HF (1994) Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol 14: 3535–3549

    CAS  PubMed  Google Scholar 

  17. Ohashi H, Maruyama K, Liu YC, Yoshimura A (1994) Ligand-induced activation of chimeric receptors between the erythropoietin receptor and receptor tyrosine kinases. Proc Natl Acad Sci USA 91: 158–162

    CAS  PubMed  Google Scholar 

  18. Cull V, Tilbrook PA, Adenan AS, Chappell D, Ingley E, Sarna MK, Palmer TN, Watowich SS, Klinken SP (2000) Dominant action of mutated erythropoietin receptors on differentiation in vitro and erythroleukemia development in vivo. Oncogene 19: 953–960

    Article  CAS  PubMed  Google Scholar 

  19. Barber DL, D’Andrea AD (1994) Erythropoietin and interleukin-2 activate distinct JAK kinase family members. Mol Cell Biol 14: 6506–6514

    CAS  PubMed  Google Scholar 

  20. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J et al. (1998) Efficacy of signaling through cytokine receptors depends critically on receptor orientation. Nature 395: 511–516

    Article  CAS  PubMed  Google Scholar 

  21. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283: 987–990

    Article  CAS  PubMed  Google Scholar 

  22. Constantinescu SN, Huang LJ, Nam H, Lodish HF (2001) The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. Mol Cell 7: 377–385

    Article  CAS  PubMed  Google Scholar 

  23. Remy I, Wilson IA, Michnick SW (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283: 990–993

    Article  CAS  PubMed  Google Scholar 

  24. Kubatzky KF, Ruan W, Gurezka R, Cohen J, Ketteler R, Watowich S, Neumann D, Langosch D, Klingmuller U (2001) Self assembly of the transmembrane domain promotes signal transduction through the erythropoietin receptor. Curr Biol 11: 110–115

    Article  CAS  PubMed  Google Scholar 

  25. Constantinescu SN, Keren T, Socolovsky M, Nam H, Henis YI, Lodish HF (2001) Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 98: 4379–4384

    Article  CAS  PubMed  Google Scholar 

  26. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273: 458–464

    CAS  PubMed  Google Scholar 

  27. Longmore GD, Lodish HF (1991) An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: a cytokine receptor superfamily oncogene. Cell 67: 1089–1102

    Article  CAS  PubMed  Google Scholar 

  28. Pharr PN, Hankins D, Hofbauer A, Lodish HF, Longmore GD (1993) Expression of a constitutively active erythropoietin receptor in primary hematopoietic progenitors abrogates erythropoietin dependence and enhances erythroid colony-forming unit, erythroid burst-forming unit, and granulocyte/macrophage progenitor growth. Proc Natl Acad Sci USA 90: 938–942

    CAS  PubMed  Google Scholar 

  29. Ruta M, Bestwick R, Machida C, Kabat D (1983) Loss of leukemogenicity caused by mutations in the membrane glycoprotein structural gene of Friend spleen focus-forming virus. Proc Natl Acad Sci USA 80: 4704–4708

    CAS  PubMed  Google Scholar 

  30. Constantinescu SN, Wu H, Liu X, Beyer W, Fallon A, Lodish HF (1998) The anemic Friend virus gp55 envelope protein induces erythroid differentiation in fetal liver colony-forming units-erythroid. Blood 91: 1163–1172

    CAS  PubMed  Google Scholar 

  31. Constantinescu SN, Ghaffari S, Lodish HF (1999) The erythropoietin receptor: Structure, activation and intracelluar signal transduction. Trends Endocrinol Metab 10: 18–23

    CAS  PubMed  Google Scholar 

  32. Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF (1993) Structure, function, and activation of the erythropoietin receptor. Blood 81: 2223–2236

    CAS  PubMed  Google Scholar 

  33. Chung SW, Wolff L, Ruscetti SK (1989) Transmembrane domain of the envelope gene of a polycythemia-inducing retrovirus determines erythropoietin-independent growth. Proc Natl Acad Sci USA 86: 7957–7960

    CAS  PubMed  Google Scholar 

  34. Zon LI, Moreau JF, Koo JW, Mathey-Prevot B, D’Andrea AD (1992) The erythropoietin receptor transmembrane region is necessary for activation by the Friend spleen focus-forming virus gp55 glycoprotein. Mol Cell Biol 12: 2949–2957

    CAS  PubMed  Google Scholar 

  35. Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Henis YI, Smith SO, Lodish HF (1999) Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 18: 3334–3347

    Article  CAS  PubMed  Google Scholar 

  36. Muszynski KW, Ohashi T, Hanson C, Ruscetti SK (1998) Both the polycythemia-and anemia-inducing strains of Friend spleen focus-forming virus induce constitutive activation of the Raf-1/mitogen-activated protein kinase signal transduction pathway. J Virol 72: 919–925

    CAS  PubMed  Google Scholar 

  37. Nishigaki K, Hanson C, Ohashi T, Thompson D, Muszynski K, Ruscetti S (2000) Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: Involvement of insulin receptor substrate-related adapter proteins. J Virol 74: 3037–3045

    Article  CAS  PubMed  Google Scholar 

  38. Constantinescu SN, Ghaffari S, Lodish HF (1999) The erythropoietin receptor: Structure, activation and intracellular signal transduction. Trends Endocrinol Metab 10: 18–23

    CAS  PubMed  Google Scholar 

  39. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379: 645–648

    Article  CAS  PubMed  Google Scholar 

  40. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J et al. (1997) A TEL-JAK 2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312

    Article  CAS  PubMed  Google Scholar 

  41. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H et al. (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90: 2535–2540

    CAS  PubMed  Google Scholar 

  42. Hanratty WP, Dearolf CR (1993) The drosophila tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet 238: 33–37

    CAS  PubMed  Google Scholar 

  43. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM et al. (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395

    Article  CAS  PubMed  Google Scholar 

  44. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93: 397–409

    Article  CAS  PubMed  Google Scholar 

  45. Hilton DJ, Watowich SS, Murray PJ, Lodish HF (1995) Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc Natl Acad Sci USA 92: 190–194

    CAS  PubMed  Google Scholar 

  46. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T (1991) Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77: 2583–2590

    CAS  PubMed  Google Scholar 

  47. Sawyer ST, Krantz SB, Luna J (1987) Identification of the receptor for erythropoietin by cross-linking to Friend virus-infected erythropoietin cells. Proc Natl Acad Sci USA 84: 3690–3694

    CAS  PubMed  Google Scholar 

  48. Huang LJ, Constantinescu SN, Lodish HF (2001) The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 8: 1327–1338

    Article  CAS  PubMed  Google Scholar 

  49. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–236

    Article  CAS  PubMed  Google Scholar 

  50. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17: 2497–2501

    CAS  PubMed  Google Scholar 

  51. Miller CP, Heilman DW, Wojchowski DM (2002) Erythropoietin receptor-dependent erythroid colony-forming unit development: Capacities of Y343 and phosphotyrosine-null receptor forms. Blood 99: 898–904

    CAS  PubMed  Google Scholar 

  52. Zang H, Sato K, Nakajima H, McKay C, Ney PA, Ihle JN (2001) The distal region and receptor tyrosines of the EPO receptor are non-essential for in vivo erythropoiesis. EMBO J 20: 3156–3166

    Article  CAS  PubMed  Google Scholar 

  53. Ghaffari S, Kitidis C, Fleming MD, Neubauer H, Pfeffer K, Lodish HF (2001) Erythropoiesis in the absence of janus-kinase2: BCR-ABL induces red cell formation in JAK2(-/-) hematopoietic progenitors. Blood 98: 2948–2957

    Article  CAS  PubMed  Google Scholar 

  54. Klingmuller U, Bergelson S, Hsiao JG, Lodish HF (1996) Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc Natl Acad Sci USA 93: 8324–8328

    Article  CAS  PubMed  Google Scholar 

  55. Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, Miura O (1998) Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood 91: 3734–3745

    CAS  PubMed  Google Scholar 

  56. Duprez V, Blank U, Chretien S, Gisselbrecht S, Mayeux P (1998) Physical and functional interaction between p72(syk) and erythropoietin receptor. J Biol Chem 273: 33985–33990

    Article  CAS  PubMed  Google Scholar 

  57. Machide M, Mano H, Todokoro K (1995) Interleukin 3 and erythropoietin induce association of Vav with Tec kinase through Tec homology domain. Oncogene 11: 619–625

    CAS  PubMed  Google Scholar 

  58. Tilbrook PA, Ingley E, Williams JH, Hibbs ML, Klinken SP (1997) Lyn tyrosine kinase is essential for erythropoietin-induced differentiation of J2E erythroid cells. EMBO J 16: 1610–1619

    Article  CAS  PubMed  Google Scholar 

  59. Tilbrook PA, Colley SM, McCarthy DJ, Marais R, Klinken SP (2001) Erythropoietin-stimulated Raf-1 tyrosine phosphorylation is associated withteh tyrosine kinase Lyn in J2E erythroleukemic cells. Arch Biochem Biophys 396: 128–132

    Article  CAS  PubMed  Google Scholar 

  60. Tilbrook PA, Palmer GA, Bittorf T, McCarthy DJ, Wright MJ, Sarna MK, Linnekin D, Cull VS, Williams JH, Ingley E et al. (2001) Maturation of erythroid cells and erythroleukemia development are affected by the kinase activity of Lyn. Cancer Res 61: 2453–2458

    CAS  PubMed  Google Scholar 

  61. Ingley E, Sarna MK, Beaumont JG, Tilbrook PA, Tsai S, Takemoto Y, Williams JH, Klinken SP (2000) HS1 interacts with Lyn and is critical for erythropoietin-induced differentiation of erythroid cells. J Biol Chem 275: 7887–7893

    Article  CAS  PubMed  Google Scholar 

  62. Arai A, Kanda E, Nosaka Y, Miyasaka N, Miura O (2001) CrkL is recruited through its SH2 domain to the erythropoietin receptor and plays a role in Lyn-mediated receptor signaling. J Biol Chem 276: 33282–33290

    CAS  PubMed  Google Scholar 

  63. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR (1995) Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83: 301–311

    Article  CAS  PubMed  Google Scholar 

  64. Ward AC, Touw I, Yoshimura A (2000) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 95: 19–29

    CAS  PubMed  Google Scholar 

  65. Wakao H, Harada N, Kitamura T, Mui AL, Miyajima A (1995) Interleukin 2 and erythropoietin activates STAT5/MGF via distinct pathways. EMBO J 14: 2527–2535

    CAS  PubMed  Google Scholar 

  66. Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, Cutler RL, Krystal G (1995) Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and Stat5 activation. EMBO J 14: 5557–5568

    CAS  PubMed  Google Scholar 

  67. Gobert S, Chretien S, Gouilleux F, Muller O, Pallard C, Dusanter-Fourt I, Groner B, Lacombe C, Gisselbrecht S, Mayeux P (1996) Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J 15: 2434–41

    CAS  PubMed  Google Scholar 

  68. Wu H, Klingmuller U, Acurio A, Hsiao JG, Lodish HF (1997) Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci USA 94: 1806–1810

    CAS  PubMed  Google Scholar 

  69. Ahmed M, Dusanter-Fourt I, Bernard M, Mayeux P, Hawley RG, Bennardo T, Novault S, Bonnet ML, Gisselbrecht S, Varet B et al. (1998) BCR-ABL and constitutively active erythropoietin receptor (cEpoR) activate distinct mechanisms for growth factor-independence and inhibition of apoptosis in Ba/F3 cell line. Oncogene 16: 489–496

    Article  CAS  PubMed  Google Scholar 

  70. Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S, Lacombe C, Mayeux P (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem 273: 28185–28190

    Article  CAS  PubMed  Google Scholar 

  71. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14: 2816–2826

    CAS  PubMed  Google Scholar 

  72. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278: 1803–1805

    Article  CAS  PubMed  Google Scholar 

  73. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95: 10626–10631

    CAS  PubMed  Google Scholar 

  74. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/-mice: A direct role for Stat5 in Bcl-X(L) induction. Cell 98: 181–191

    Article  CAS  PubMed  Google Scholar 

  75. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, Mollat P, Gisselbrecht S, Gouilleux F (1999) IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 18: 4191–4199

    Article  CAS  PubMed  Google Scholar 

  76. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T (1999) STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 18: 4754–4765

    Article  CAS  PubMed  Google Scholar 

  77. Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nunez G, Fernandez-Luna JL (1999) Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 274: 22165–22169

    Article  CAS  PubMed  Google Scholar 

  78. Kirito K, Nakajima K, Watanabe T, Uchida M, Tanaka M, Ozawa K, Komatsu N (2002) Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood 99: 102–110

    CAS  PubMed  Google Scholar 

  79. Kirito K, Uchida M, Takatoku M, Nakajima K, Hirano T, Miura Y, Komatsu N (1998) A novel function of Stat1 and Stat3 proteins in erythropoietin-induced erythroid differentiation of a human leukemia cell line. Blood 92: 462–471

    CAS  PubMed  Google Scholar 

  80. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11: 179–186

    CAS  PubMed  Google Scholar 

  81. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94: 7239–7244

    Article  CAS  PubMed  Google Scholar 

  82. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93: 841–850

    Article  CAS  PubMed  Google Scholar 

  83. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98: 3261–3273

    Article  CAS  PubMed  Google Scholar 

  84. Damen JE, Mui AL, Puil L, Pawson T, Krystal G (1993) Phosphatidylinositol 3-kinase associates, via its Src homology 2 domains, with the activated erythropoietin receptor. Blood 81: 3204–3210

    CAS  PubMed  Google Scholar 

  85. Damen JE, Cutler RL, Jiao H, Yi T, Krystal G (1995) Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J Biol Chem 270: 23402–23408

    CAS  PubMed  Google Scholar 

  86. Klingmuller U, Wu H, Hsiao JG, Toker A, Duckworth BC, Cantley LC, Lodish HF (1997) Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Proc Natl Acad Sci USA 94: 3016–3021

    Article  CAS  PubMed  Google Scholar 

  87. von Lindern M, Amelsvoort MP, van Dijk T, Deiner E, van Den Akker E, van Emst-De Vries S, Willems P, Beug H, Lowenberg B (2000) Protein kinase C alpha controls erythropoietin receptor signaling. J Biol Chem 275: 34719–34727

    Google Scholar 

  88. Barnache S, Mayeux P, Payrastre B, Moreau-Gachelin F (2001) Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Blood 98: 2372–2381

    Article  CAS  PubMed  Google Scholar 

  89. Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W, Tavitian A (1996) Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 16: 2453–2463

    CAS  PubMed  Google Scholar 

  90. Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada K et al. (2000) A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 96: 941–949

    CAS  PubMed  Google Scholar 

  91. Haseyama Y, Sawada K, Oda A, Koizumi K, Takano H, Tarumi T, Nishio M, Handa M, Ikeda Y, Koike T (1999) Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood 94: 1568–1577

    CAS  PubMed  Google Scholar 

  92. Verdier F, Chretien S, Billat C, Gisselbrecht S, Lacombe C, Mayeux P (1997) Erythropoietin induces the tyrosine phosphorylation of insulin receptor substrate-2. An alternate pathway for erythropoietin-induced phosphatidylinositol 3-kinase activation. J Biol Chem 272: 26173–26178

    Article  CAS  PubMed  Google Scholar 

  93. Kubota Y, Tanaka T, Kitanaka A, Ohnishi H, Okutani Y, Waki M, Ishida T, Kamano H (2001) Src transduces erythropoietin-induced differentiation signals through phosphatidylinositol 3-kinase. EMBO J 20: 5666–5677

    Article  CAS  PubMed  Google Scholar 

  94. Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST (1999) Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 93: 3757–3773

    CAS  PubMed  Google Scholar 

  95. Henry M, Lynch J, Eapen A, Quelle FW (2001) DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 98: 834–841

    Article  CAS  PubMed  Google Scholar 

  96. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ (2001) Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276: 38349–38352

    CAS  PubMed  Google Scholar 

  97. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292: 1728–1731

    Article  CAS  PubMed  Google Scholar 

  98. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K et al. (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15: 2203–2208

    CAS  PubMed  Google Scholar 

  99. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185

    Article  CAS  PubMed  Google Scholar 

  100. Gobert S, Duprez V, Lacombe C, Gisselbrecht S, Mayeux P (1995) The signal transduction pathway of erythropoietin involves three forms of mitogen-activated protein (MAP) kinase in UT7 erythroleukemia cells. Eur J Biochem 234: 75–83

    Article  CAS  PubMed  Google Scholar 

  101. Nagata Y, Nishida E, Todokoro K (1997) Activation of JNK signaling pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 89: 2664–2669

    CAS  PubMed  Google Scholar 

  102. Nagata Y, Moriguchi T, Nishida E, Todokoro K (1997) Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 90: 929–934

    CAS  PubMed  Google Scholar 

  103. Nagata Y, Takahashi N, Davis RJ, Todokoro K (1998) Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 92: 1859–1869

    CAS  PubMed  Google Scholar 

  104. Nagata Y, Todokoro K (1999) Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 94: 853–863

    CAS  PubMed  Google Scholar 

  105. Miura Y, Miura O, Ihle JN, Aoki N (1994) Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. J Biol Chem 269: 29962–29969

    CAS  PubMed  Google Scholar 

  106. Sakamoto H, Kitamura T, Yoshimura A (2000) Mitogen-activated protein kinase plays an essential role in the erythropoietin-dependent proliferation of CTLL-2 cells. J Biol Chem 275: 35857–35862

    CAS  PubMed  Google Scholar 

  107. Carroll MP, Spivak JL, McMahon M, Weich N, Rapp UR, May WS (1991) Erythropoietin induces Raf-1 activation and Raf-1 is required for erythropoietin-mediated proliferation. J Biol Chem 266: 14964–14969

    CAS  PubMed  Google Scholar 

  108. Sui X, Krantz SB, You M, Zhao Z (1998) Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92: 1142–1149

    CAS  PubMed  Google Scholar 

  109. Jacobs-Helber SM, Ryan JJ, Sawyer ST (2000) JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 96: 933–940

    CAS  PubMed  Google Scholar 

  110. Shan R, Price JO, Gaarde WA, Monia BP, Krantz SB, Zhao ZJ (1999) Distinct roles of JNKs/p38 MAP kinase and ERKs in apoptosis and survival of HCD-57 cells induced by withdrawal or addition of erythropoietin. Blood 94: 4067–4076

    CAS  PubMed  Google Scholar 

  111. Umanoff H, Edelmann W, Pellicer A, Kucherlapati R (1995) The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92: 1709–1713

    CAS  PubMed  Google Scholar 

  112. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R et al. (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11: 2468–2481

    CAS  PubMed  Google Scholar 

  113. Esteban LM, Fernandez-Medarde A, Lopez E, Yienger K, Guerrero C, Ward JM, Tessarollo L, Santos E (2000) Ras-guanine nucleotide exchange factor Sos2 is dispensable for mouse growth and development. Mol Cell Biol 20: 6410–6413

    Article  CAS  PubMed  Google Scholar 

  114. Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K, Lopez E, Malumbres M, McKay R, Ward JM et al. (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444–1452

    Article  CAS  PubMed  Google Scholar 

  115. Bos JL (1989) Ras oncogenes in human cancer: A review. Cancer Res 49: 4682–4689

    CAS  PubMed  Google Scholar 

  116. Darley RL, Hoy TG, Baines P, Padua RA, Burnett AK (1997) Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ cells. J Exp Med 185: 1337–1347

    Article  CAS  PubMed  Google Scholar 

  117. Verdier F, Rabionet R, Gouilleux F, Beisenherz-Huss C, Varlet P, Muller O, Mayeux P, Lacombe C, Gisselbrecht S, Chretien S (1998) A sequence of the CIS gene promoter interacts preferentially with two associated STAT5A dimers: A distinct biochemical difference between STAT5A and STAT5B. Mol Cell Biol 18: 5852–5860

    CAS  PubMed  Google Scholar 

  118. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, Miyajima A, Yoshimura A (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89: 3148–3154

    CAS  PubMed  Google Scholar 

  119. Moriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F (1996) Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 16: 5691–5700

    CAS  PubMed  Google Scholar 

  120. Verdier F, Walrafen P, Hubert N, Chretien S, Gisselbrecht S, Lacombe C, Mayeux P (2000) Proteasomes regulate the duration of erythropoietin receptor activation by controlling down-regulation of cell surface receptors. J Biol Chem 275: 18375–18381

    Article  CAS  PubMed  Google Scholar 

  121. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924

    CAS  PubMed  Google Scholar 

  122. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, Ohtsuka S, Imaizumi T, Matsuda T, Ihle JN et al. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18: 1309–1320

    Article  CAS  PubMed  Google Scholar 

  123. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924–929

    CAS  PubMed  Google Scholar 

  124. Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM et al. (1999) SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98: 597–608

    Article  CAS  PubMed  Google Scholar 

  125. Toyonaga T, Hino O, Sugai S, Wakasugi S, Abe K, Shichiri M, Yamamura K (1994) Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci USA 91: 614–618

    CAS  PubMed  Google Scholar 

  126. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, Sasaki M, Johnston JA, Yoshimura A (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4: 339–351

    Article  CAS  PubMed  Google Scholar 

  127. Marine JC, McKay C, Wang D, Topham DJ, Parganas E, Nakajima H, Pendeville H, Yasukawa H, Sasaki A, Yoshimura A et al. (1999) SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98: 617–627

    CAS  PubMed  Google Scholar 

  128. Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ (1999) Signal transduction in the erythropoietin receptor system. Exp. Cell Res 253: 143–156

    Article  CAS  PubMed  Google Scholar 

  129. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SHPTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738

    Article  CAS  PubMed  Google Scholar 

  130. Sharlow ER, Pacifici R, Crouse J, Batac J, Todokoro K, Wojchowski DM (1997) Hematopoietic cell phosphatase negatively regulates erythropoietin-induced hemoglobinization in erythroleukemic SKT6 cells. Blood 90: 2175–2187

    CAS  PubMed  Google Scholar 

  131. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, Thomas ML, Beier DR (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454

    Article  CAS  PubMed  Google Scholar 

  132. Tsui HW, Siminovitch KA, de Souza L, Tsui FW (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet 4: 124–129

    CAS  PubMed  Google Scholar 

  133. Bignon JS, Siminovitch KA (1994) Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol 73: 168–179

    Article  CAS  PubMed  Google Scholar 

  134. de la Chapelle A, Sistonen P, Lehvaslaiho H, Ikkala E, Juvonen E (1993) Familial erythrocytosis genetically linked to erythropoietin receptor gene. Lancet 341: 82–84

    PubMed  Google Scholar 

  135. de la Chapelle A, Traskelin AL, Juvonen E (1993) Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 90: 4495–4499

    PubMed  Google Scholar 

  136. Watowich SS, Xie X, Klingmuller U, Kere J, Lindlof M, Berglund S, de la Chapelle A (1999) Erythropoietin receptor mutations associated with familial erythrocytosis cause hypersensitivity to erythropoietin in the heterozygous state. Blood 94: 2530–2532

    CAS  PubMed  Google Scholar 

  137. Sokol L, Prchal JF, D’Andrea A, Rado TA, Prchal JT (1994) Mutation in the negative regulatory element of the erythropoietin receptor gene in a case of sporadic primary polycythemia. Exp Hematol 22: 447–453

    CAS  PubMed  Google Scholar 

  138. Sokol L, Luhovy M, Guan Y, Prchal JF, Semenza GL, Prchal JT (1995) Primary familial polycythemia: a frameshift mutation in the erythropoietin receptor gene and increased sensitivity of erythroid progenitors to erythropoietin. Blood 86: 15–22

    CAS  PubMed  Google Scholar 

  139. Kralovics R, Indrak K, Stopka T, Berman BW, Prchal JF, Prchal JT (1997) Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 90: 2057–2061

    CAS  PubMed  Google Scholar 

  140. Kralovics R, Sokol L, Prchal JT (1998) Absence of polycythemia in a child with a unique erythropoietin receptor mutation in a family with autosomal dominant primary polycythemia. J Clin Invest 102: 124–129

    CAS  PubMed  Google Scholar 

  141. Kralovics R, Prchal JT (2001) Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol 68: 115–121

    Article  CAS  PubMed  Google Scholar 

  142. Arcasoy MO, Degar BA, Harris KW, Forget BG (1997) Familial erythrocytosis associated with a short deletion in the erythropoietin receptor gene. Blood 89: 4628–4635

    CAS  PubMed  Google Scholar 

  143. Arcasoy MO, Karayal AF, Segal HM, Sinning JG, Forget BG (2002) A novel mutation in the erythropoietin receptor gene is associated with familial erythrocytosis. Blood 99: 3066–3069

    Article  CAS  PubMed  Google Scholar 

  144. Furukawa T, Narita M, Sakaue M, Otsuka T, Kuroha T, Masuko M, Azegami T, Kishi K, Takahashi M, Utsumi J et al. (1997) Primary familial polycythaemia associated with a novel point mutation in the erythropoietin receptor. Br J Haematol 99: 222–227

    Article  CAS  PubMed  Google Scholar 

  145. Qu CK, Shi ZQ, Shen R, Tsai FY, Orkin SH, Feng GS (1997) A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol Cell Biol 17: 5499–5507

    CAS  PubMed  Google Scholar 

  146. Qu CK, Yu WM, Azzarelli B, Cooper S, Broxmeyer HE, Feng GS (1998) Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol 18: 6075–6082

    CAS  PubMed  Google Scholar 

  147. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK (1998) Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12: 1610–1620

    CAS  PubMed  Google Scholar 

  148. Kishihara K, Penninger J, Wallace VA, Kundig TM, Kawai K, Wakeham A, Timms E, Pfeffer K, Ohashi PS, Thomas ML et al. (1993) Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74: 143–156

    Article  CAS  PubMed  Google Scholar 

  149. Byth KF, Conroy LA, Howlett S, Smith AJ, May J, Alexander DR, Holmes N (1996) CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J Exp Med 183: 1707–1718

    Article  CAS  PubMed  Google Scholar 

  150. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K et al. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409: 349–354

    Article  CAS  PubMed  Google Scholar 

  151. Lansdorp PM, Sutherland HJ, Eaves CJ (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med 172: 363–366

    Article  CAS  PubMed  Google Scholar 

  152. Craig W, Poppema S, Little MT, Dragowska W, Lansdorp PM (1994) CD45 isoform expression on human haemopoietic cells at different stages of development. Br J Haematol 88: 24–30

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Ghaffari, S., Huang, L.Js., Zhang, J., Lodish, H.F. (2003). Erythropoietin receptor signaling processes. In: Molineux, G., Foote, M.A., Elliott, S.G. (eds) Erythropoietins and Erythropoiesis. Milestones in Drug Therapy MDT. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7543-4_5

Download citation

Publish with us

Policies and ethics