Advertisement

New molecules and formulations of recombinant human erythropoietin

  • Steven G. Elliott
Part of the Milestones in Drug Therapy MDT book series (MDT)

Keywords

Sialic Acid Onize EPOR Glycosy Lation Small Molecule Insulin Thropoietin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Winearls CG, Forman E, Wiffen P, Oliver DO (1989) Recombinant human erythropoietin treatment in patients on maintenance home haemodialysis. Lancet 2: 569PubMedGoogle Scholar
  2. 2.
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW (1987) Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316: 73–78PubMedGoogle Scholar
  3. 3.
    Eschbach JW, Kelly MR, Haley NR, Abels RI, Adamson JW (1989) Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med 321: 158–163PubMedGoogle Scholar
  4. 4.
    Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, Michaud P, Papo T, Ugo V, Teyssandier I et al. (2002) Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 346: 469–475CrossRefPubMedGoogle Scholar
  5. 5.
    Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF (1993) Structure, function, and activation of the erythropoietin receptor. Blood 81: 2223–2236PubMedGoogle Scholar
  6. 6.
    Watowich SS (1999) Activation of erythropoietin signaling by receptor dimerization. Int J Biochem Cell Biol 31: 1075–1088CrossRefPubMedGoogle Scholar
  7. 7.
    Philo JS, Aoki KH, Arakawa T, Narhi LO, Wen J (1996) Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: One high-affinity and one low-affinity interaction. Biochemistry 35: 1681–1691CrossRefPubMedGoogle Scholar
  8. 8.
    Matthews DJ, Topping RS, Cass RT, Giebel LB (1996) A sequential dimerization mechanism for erythropoietin receptor activation. Proc Natl Acad Sci USA 93: 9471–9476CrossRefPubMedGoogle Scholar
  9. 9.
    Sawada K, Krantz SB, Sawyer ST, Civin CI (1988) Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 137: 337–345CrossRefPubMedGoogle Scholar
  10. 10.
    Sawyer ST, Krantz SB, Goldwasser E (1987) Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem 262: 5554–5562PubMedGoogle Scholar
  11. 11.
    Sawyer ST, Hankins WD (1993) The functional form of the erythropoietin receptor is a 78-kDa protein: Correlation with cell surface expression, endocytosis, and phosphorylation. Proc Natl Acad Sci USA 90: 6849–6853PubMedGoogle Scholar
  12. 12.
    Sawyer ST (1994) Introduction: The erythropoietin receptor and signal transduction. Ann N Y Acad Sci 718: 185–190PubMedGoogle Scholar
  13. 13.
    Delorme E, Lorenzini T, Giffin J, Martin F, Jacobsen F, Boone T, Elliott S (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31: 9871–9876CrossRefPubMedGoogle Scholar
  14. 14.
    Takeuchi M, Takasaki S, Shimada M, Kobata A (1990) Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J Biol Chem 265: 12127–12130PubMedGoogle Scholar
  15. 15.
    Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: The role of carbohydrates. Blood 73: 84–89PubMedGoogle Scholar
  16. 16.
    Uchida E, Morimoto K, Kawasaki N, Izaki Y, Abdu SA, Hayakawa T (1997) Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res 27: 311–323PubMedGoogle Scholar
  17. 17.
    Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E (1997) Mapping of the active site of recombinant human erythropoietin. Blood 89: 493–502PubMedGoogle Scholar
  18. 18.
    Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant J et al. (2003) Increasing their carbohydrate content can enhance the in vivo activity of protein therapeutics. Nat Biotechnol 21: 414–421CrossRefPubMedGoogle Scholar
  19. 19.
    Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84: Suppl–10CrossRefGoogle Scholar
  20. 20.
    Lai PH, Everett R, Wang FF, Arakawa T, Goldwasser E (1986) Structural characterization of human erythropoietin. J Biol Chem 261: 3116–3121PubMedGoogle Scholar
  21. 21.
    Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82: 7580–7584PubMedGoogle Scholar
  22. 22.
    Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262: 12059–12076PubMedGoogle Scholar
  23. 23.
    Rush RS, Derby PL, Smith DM, Merry C, Rogers G, Rohde MF, Katta V (1995) Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem 67: 1442–1452CrossRefPubMedGoogle Scholar
  24. 24.
    Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1: 337–346PubMedGoogle Scholar
  25. 25.
    Lukowsky WA, Painter RH (1972) Studies on the role of sialic acid in the physical and biological properties of erythropoietin. Can J Biochem 50: 909–917PubMedGoogle Scholar
  26. 26.
    Roitsch T, Lehle L (1989) Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. Eur J Biochem 181: 525–529PubMedGoogle Scholar
  27. 27.
    Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: Implications for protein engineering. Protein Eng 3: 433–442PubMedGoogle Scholar
  28. 28.
    Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays 21: 412–421CrossRefPubMedGoogle Scholar
  29. 29.
    Elliott S, Chang D, Delorme E, Dunn C, Egrie J, Giffin J, Lorenzini T, Talbot C, Hesterberg L (1996) Isolation and characterization of conformation sensitive antierythropoietin monoclonal antibodies: Effect of disulfide bonds and carbohydrate on recombinant human erythropoietin structure. Blood 87: 2714–2722PubMedGoogle Scholar
  30. 30.
    Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E, Giffin J, Hesterberg L (1996) Fine-structure epitope mapping of anti-erythropoietin monoclonal antibodies reveals a model of recombinant human erythropoietin structure. Blood 87: 2702–2713PubMedGoogle Scholar
  31. 31.
    Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, Egrie J (1999) Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 10: 2392–2395PubMedGoogle Scholar
  32. 32.
    Nissenson AR (2001) Novel erythropoiesis stimulating protein for managing the anemia of chronic kidney disease. Am J Kidney Dis 38: 1390–1397PubMedGoogle Scholar
  33. 33.
    Nissenson AR, Swan SK, Lindberg JS, Soroka SD, Beatey R, Wang C, Picarello N, McDermott-Vitak A, Maroni BJ (2002) Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis 40: 110–118PubMedGoogle Scholar
  34. 34.
    Smith R (2002) Applications of darbepoetin-[alpha], a novel erythropoiesis-stimulating protein, in oncology. Curr Opinion Hematol 9: 228–233Google Scholar
  35. 35.
    Narhi LO, Arakawa T, Aoki KH, Elmore R, Rohde MF, Boone T, Strickland TW (1991) The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 266: 23022–23026PubMedGoogle Scholar
  36. 36.
    Endo Y, Nagai H, Watanabe Y, Ochi K, Takagi T (1992) Heat-induced aggregation of recombinant erythropoietin in the intact and deglycosylated states as monitored by gel permeation chromatography combined with a low-angle laser light scattering technique. J Biochem 112: 700–706PubMedGoogle Scholar
  37. 37.
    Jelkmann W (1992) Erythropoietin: Structure, control of production, and function. Physiol Rev 72: 449–489PubMedGoogle Scholar
  38. 38.
    Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218: 1–27CrossRefPubMedGoogle Scholar
  39. 39.
    Macdougall IC (2002) Darbepoetin alfa: A new therapeutic agent for renal anemia. Kidney Int 61: S55–S61CrossRefGoogle Scholar
  40. 40.
    Delgado C, Francis GE, Fisher D (1992) The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 9: 249–304PubMedGoogle Scholar
  41. 41.
    Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D (1998) PEGylation of cytokines and other therapeutic proteins and peptides: The importance of biological optimisation of coupling techniques. Int J Hematol 68: 1–18PubMedGoogle Scholar
  42. 42.
    Goodson RJ, Katre NV (1990) Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8: 343–346PubMedGoogle Scholar
  43. 43.
    He XH, Shaw PC, Tam SC (1999) Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci 65: 355–368CrossRefPubMedGoogle Scholar
  44. 44.
    Weich NS, Tullai J, Guido E, McMahon M, Jolliffe LK, Lopez AF, Vadas MA, Lowry PA, Quesenberry PJ, Rosen J (1993) Interleukin-3/erythropoietin fusion proteins: In vitro effects on hematopoietic cells. Exp Hematol 21: 647–655PubMedGoogle Scholar
  45. 45.
    Coscarella A, Carloni C, Liddi R, Mauro S, Novelli S, Mele A, Masella B, Valtieri M, De Santi R (1997) Production of recombinant human GM-CSF-EPO hybrid proteins: In vitro biological characterization. Eur J Haematol 59: 238–246PubMedGoogle Scholar
  46. 46.
    Sytkowski AJ, Lunn ED, Davis KL, Feldman L, Siekman S (1998) Human erythropoietin dimers with markedly enhanced in vivo activity. Proc Natl Acad Sci USA 95: 1184–1188CrossRefPubMedGoogle Scholar
  47. 47.
    Dalle B, Henri A, Rouyer-Fessard P, Bettan M, Scherman D, Beuzard Y, Payen E (2001) Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo. Blood 97: 3776–3782CrossRefPubMedGoogle Scholar
  48. 48.
    Sytkowski AJ, Lunn ED, Risinger MA, Davis KL (1999) An erythropoietin fusion protein comprised of identical repeating domains exhibits enhanced biological properties. J Biol Chem 274: 24773–24778CrossRefPubMedGoogle Scholar
  49. 49.
    Coscarella A, Liddi R, Di Loreto M, Bach S, Faiella A, van der Meide PH, Mele A, De Santis R (1998) The rhGM-CSF-EPO hybrid protein MEN 11300 induces anti-EPO antibodies and severe anaemia in rhesus monkeys. Cytokine 10: 964–969CrossRefPubMedGoogle Scholar
  50. 50.
    Cerami A, Brines M, Ghezzi P, Cerami C, Itri LM (2002) Neuroprotective properties of epoetin alfa. Nephrol Dial Transplant 17: Suppl–12Google Scholar
  51. 51.
    Marti HH, Gassmann M, Wenger RH, Kvietikova I, Morganti-Kossmann MC, Kossmann T, Trentz O, Bauer C (1997) Detection of erythropoietin in human liquor: Intrinsic erythropoietin production in the brain. Kidney Int 51: 416–418PubMedGoogle Scholar
  52. 52.
    Yoshimura A, Longmore G, Lodish HF (1990) Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348: 647–649CrossRefPubMedGoogle Scholar
  53. 53.
    Elliott S, Lorenzini T, Yanagihara D, Chang D, Elliott G (1996) Activation of the erythropoietin (EPO) receptor by bivalent anti-EPO receptor antibodies. J Biol Chem 271: 24691–24697PubMedGoogle Scholar
  54. 54.
    Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273: 458–464PubMedGoogle Scholar
  55. 55.
    Qureshi SA, Kim RM, Konteatis Z, Biazzo DE, Motamedi H, Rodrigues R, Boice JA, Calaycay JR, Bednarek MA, Griffin P et al. (1999) Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci USA 96: 12156–12161CrossRefPubMedGoogle Scholar
  56. 56.
    Goldberg J, Jin Q, Ambroise Y, Satoh S, Desharnais J, Capps K, Boger DL (2002) Erythropoietin mimetics derived from solution phase combinatorial libraries. J Am Chem Soc 124: 544–555CrossRefPubMedGoogle Scholar
  57. 57.
    Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J et al. (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395: 511–516CrossRefPubMedGoogle Scholar
  58. 58.
    Livnah O, Stura EA, Johnson DL, Middleton SA, Mulcahy LS, Wrighton NC, Dower WJ, Jolliffe LK, Wilson IA (1996) Functional mimicry of a protein hormone by a peptide agonist: The EPO receptor complex at 2.8 A. Science 273: 464–471PubMedGoogle Scholar
  59. 59.
    Wrighton NC, Balasubramanian P, Barbone FP, Kashyap AK, Farrell FX, Jolliffe LK, Barrett RW, Dower WJ (1997) Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nat Biotechnol 15: 1261–1265CrossRefPubMedGoogle Scholar
  60. 60.
    Kuai L, Wu C, Qiu Q, Zhang J, Zhou A, Wang S, Zhang H, Song Q, Liao S, Han Y et al. (2000) Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP. J Peptide Res 56: 59–62Google Scholar
  61. 61.
    McConnell SJ, Dinh T, Le MH, Brown SJ, Becherer K, Blumeyer K, Kautzer C, Axelrod F, Spinella DG (1998) Isolation of erythropoietin receptor agonist peptides using evolved phage libraries. Biol Chem 379: 1279–1286PubMedGoogle Scholar
  62. 62.
    Naranda T, Kaufman RI, Li J, Wong K, Boge A, Hallen D, Fung KY, Duncan MW, Andersen N, Goldstein A et al. (2002) Activation of erythropoietin receptor through a novel extracellular binding site. Endocrinology 143: 2293–2302CrossRefPubMedGoogle Scholar
  63. 63.
    Biazzo DE, Motamedi H, Mark DF, Qureshi SA (2000) A high-throughput assay to identify compounds that can induce dimerization of the erythropoietin receptor. Anal Biochem 278: 39–45CrossRefPubMedGoogle Scholar
  64. 64.
    Tian SS, Lamb P, King AG, Miller SG, Kessler L, Luengo JI, Averill L, Johnson RK, Gleason JG, Pelus LM et al. (1998) A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281: 257–259CrossRefPubMedGoogle Scholar
  65. 65.
    Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Diez MT, Pelaez F, Ruby C et al. (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284: 974–977PubMedGoogle Scholar
  66. 66.
    Qureshi SA, Ding V, Li Z, Szalkowski D, Biazzo-Ashnault DE, Xie D, Saperstein R, Brady E, Huskey S, Shen X et al. (2000) Activation of insulin signal transduction pathway and anti-diabetic activity of small molecule insulin receptor activators. J Biol Chem 275: 36590–36595CrossRefPubMedGoogle Scholar
  67. 67.
    Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Henis YI, Smith SO, Lodish HF (1999) Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 18: 3334–3347CrossRefPubMedGoogle Scholar
  68. 68.
    Li JP, Hu HO, Niu QT, Fang C (1995) Cell surface activation of the erythropoietin receptor by Friend spleen focus-forming virus gp55. J Virol 69: 1714–1719PubMedGoogle Scholar
  69. 69.
    Sharlow ER, Pacifici R, Crouse J, Batac J, Todokoro K, Wojchowski DM (1997) Hematopoietic cell phosphatase negatively regulates erythropoietin-induced hemoglobinization in erythroleukemic SKT6 cells. Blood 90: 2175–2187PubMedGoogle Scholar
  70. 70.
    Yi T, Zhang J, Miura O, Ihle JN (1995) Hematopoietic cell phosphatase associates with erythropoietin (EPO) receptor after EPO-induced receptor tyrosine phosphorylation: Identification of potential binding sites. Blood 85: 87–95PubMedGoogle Scholar
  71. 71.
    Watowich SS, Xie X, Klingmuller U, Kere J, Lindlof M, Berglund S, del la Chapelle A (1999b) Erythropoietin receptor mutations associated with familial erythrocytosis cause hypersensitivity to erythropoietin in the heterozygous state. Blood 94: 2530–2532PubMedGoogle Scholar
  72. 72.
    de la Chapelle A, Traskelin AL, Juvonen E (1993) Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 90: 4495–4499PubMedGoogle Scholar
  73. 73.
    Tsui FW, Tsui HW (1994) Molecular basis of the motheaten phenotype. Immunol Rev 138: 185–206PubMedGoogle Scholar
  74. 74.
    Lankester AC, van Schijndel GM, van Lier RA (1995) Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation. J Biol Chem 270: 20305–20308PubMedGoogle Scholar
  75. 75.
    Tapley P, Shevde NK, Schweitzer PA, Gallina M, Christianson SW, Lin IL, Stein RB, Shultz LD, Rosen J, Lamb P (1997) Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 25: 122–131PubMedGoogle Scholar
  76. 76.
    Naffakh N, Henri A, Villeval JL, Rouyer-Fessard P, Moullier P, Blumenfeld N, Danos O, Vainchenker W, Heard JM, Beuzard Y (1995) Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts. Proc Natl Acad Sci USA 92: 3194–3198PubMedGoogle Scholar
  77. 77.
    Bohl D, Naffakh N, Heard JM (1997) Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 3: 299–305CrossRefPubMedGoogle Scholar
  78. 78.
    Naffakh N, Danos O (1996) Gene transfer for erythropoiesis enhancement. Mol Med Today 2: 343–348PubMedGoogle Scholar
  79. 79.
    Naffakh N, Pinset C, Montarras D, Li Z, Paulin D, Danos O, Heard JM (1996) Long-term secretion of therapeutic proteins from genetically modified skeletal muscles. Hum Gene Ther 7: 11–21PubMedGoogle Scholar
  80. 80.
    Meyer F, Finer M (2001) Gene therapy: Progress and challenges. Cell Mol Biol 47: 1277–1294PubMedGoogle Scholar
  81. 81.
    Dalle B, Payen E, Regulier E, Deglon N, Rouyer-Fessard P, Beuzard Y, Aebischer P (1999) Improvement of mouse beta-thalassemia upon erythropoietin delivery by encapsulated myoblasts. Gene Ther 6: 157–161CrossRefPubMedGoogle Scholar
  82. 82.
    Payen E, Bettan M, Henri A, Tomkiewitcz E, Houque A, Kuzniak I, Zuber J, Scherman D, Beuzard Y (2001) Oxygen tension and a pharmacological switch in the regulation of transgene expression for gene therapy. J Gene Med 3: 498–504CrossRefPubMedGoogle Scholar
  83. 83.
    Bohl D, Heard JM (2000) Delivering erythropoietin through genetically engineered cells. J Am Soc Nephrol 11: Suppl–62Google Scholar
  84. 84.
    Serguera C, Bohl D, Rolland E, Prevost P, Heard JM (1999) Control of erythropoietin secretion by doxycycline or mifepristone in mice bearing polymer-encapsulated engineered cells. Hum Gene Ther 10: 375–383CrossRefPubMedGoogle Scholar
  85. 85.
    Ye X, Rivera VM, Zoltick P, Cerasoli FJr Schnell MA, Gao G, Hughes JV, Gilman M, Wilson JM (1999) Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283: 88–91CrossRefPubMedGoogle Scholar
  86. 86.
    Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, Iino N, Kameda S, Kawachi H, Yaoita E, Gejyo F, Miyazaki J (2002) Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 13: 455–468CrossRefPubMedGoogle Scholar
  87. 87.
    Morlock M, Kissel T, Li YX, Koll H, Winter G (1998) Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: Protein stabilization and in vitro release properties. J Controlled Rel 56: 105–115CrossRefGoogle Scholar
  88. 88.
    Pistel KF, Bittner B, Koll H, Winter G, Kissel T (1999) Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: Influence of encapsulation technique and polymer composition on particle characteristics. J Controlled Rel 59: 309–325CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2003

Authors and Affiliations

  • Steven G. Elliott
    • 1
  1. 1.Amgen Inc.Thousand OaksUSA

Personalised recommendations