Skip to main content

A Functional Description for the Commutative WJ*-algebras of the D + κ -class

  • Chapter

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 163))

Abstract

We consider the action in Krein spaces of weakly closed J-symmetric operator algebras with identity possessing an invariant maximal nonnegative subspace, presented as a direct sum of a finite-dimensional neutral subspace and a uniformly positive subspace. A relation between these algebras (that in addition are assumed to be commutative) and function spaces of the type L σ L 2 v is established.

This work was completed with the support of project CONICIT (Venezuela) No 97000668.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Akhiezer, I.M. Glazman, Theory of linear operators in Hilbert space. Pitman: London, 1981.

    MATH  Google Scholar 

  2. T.Ya. Azizov, I.S. Iokhvidov, Linear operators in spaces with an indefinite metric. “Matematicheskii analiz” (Itogi nauki i tehniki, VINITI) 17 (1979) Moscow, 113–205 (Russian).

    MathSciNet  Google Scholar 

  3. T.Ya. Azizov, I.S. Iokhvidov, Foundation of the Theory of Linear Operators in Spaces with Indefinite Metric. Nauka: Moscow, 1986 (Russian); Linear Operators in Spaces with Indefinite Metric. Wiley: New York, 1989 (English).

    Google Scholar 

  4. T.Ya. Azizov, V.A. Strauss, Spectral decomposition of self-adjoint and normal operators in Krein space. Research Paper No 827 (2002) Department of Mathematics and Statistics, University of Calgary, Calgary, Canada.

    Google Scholar 

  5. T.Ya. Azizov, V.A. Strauss, Spectral decompositions for special classes of self-adjoint and normal operators on Krein spaces. Spectral Theory and its Applications, Proceedings dedicated to the 70th birthday of Prof. I. Colojoară, Theta 2003, 45–67.

    Google Scholar 

  6. T.Ya. Azizov, V.A. Strauss, On a spectral decomposition of a commutative operator family in spaces with indefinite metric. MFAT 11 (2005) No 1, 10–20.

    MathSciNet  MATH  Google Scholar 

  7. T.Ya. Azizov, L.I. Sukhocheva, V.A. Shtraus (=Strauss), Operators in Krein space. Matematicheskie Zametki 76 (2004) No 3, 324–334 (Russian); Math. Notes 76 (2004) No 3, 306–314 (English).

    MathSciNet  Google Scholar 

  8. J. Bergh, J. Löfström, Interpolation spaces. An Introduction. Springer Verlag, NY, 1976.

    MATH  Google Scholar 

  9. J. Bognar, Indefinite inner product spaces. Springer-Verlag, NY, 1974.

    MATH  Google Scholar 

  10. M.S. Birman, M.Z. Solomyak, Spectral theory of self-ajoint operators in a Hilbert space. Leningrad University, 1980 (Russian).

    Google Scholar 

  11. O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. Volume 1. Springer-Verlag, NY, 1979.

    MATH  Google Scholar 

  12. I. Colojoară, C. Foiaş, Theory of generalized spectral operators. Gordon and Breach, 1968.

    Google Scholar 

  13. N. Dunford, J.T. Schwartz, Linear Operators. General Theory. John Wiley & Sons, 1958.

    Google Scholar 

  14. N. Dunford, J.T. Schwartz, Linear Operators. Part III. Spectral operators. John Wiley & Sons, 1971.

    Google Scholar 

  15. A. Gheondea, Pseudo-regular spectral functions in Krein spaces. J. Operator Theory 12 (1984), 349–358.

    MATH  MathSciNet  Google Scholar 

  16. I.S. Iokhvidov, M.G. Krein, H. Langer, Introduction to the spectral theory of operators in spaces with an indefinite metric. Akademie-Verlag, Berlin, 1982.

    Google Scholar 

  17. R.S. Ismagilov, M.A. Naimark, Representations of groups and algebras in spaces with indefinite metric. “Matematicheskii analiz” (Itogi nauki i tehniki 1968, VINITI) (1969), Moscow, 73–105 (Russian).

    Google Scholar 

  18. P. Jonas, On the functional calculus and the spectral function for definitizable operators in Krein space. Beitr. Anal. 16 (1981), 121–135.

    MATH  MathSciNet  Google Scholar 

  19. P. Jonas, H. Langer, A model for π-selfadjont operators in π 1 -spaces and a special linear pencil. Integral Equations Opererator Theory 8 (1985) No 1, 13–35.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Jonas, H. Langer, B. Textorius, Models and unitary equivalence of ciclic selfadjoint operators in Pontrjagin spaces. Operator Theory and complex analysis (Sapporo, 1991), 252–284, Oper. Theory Adv. Appl. 59 Birkhäuser, Basel, 1992.

    Google Scholar 

  21. L.V. Kantorovich, G.P. Akilov, Functional analysis, 2nd edition. Nauka (Moscow) 1977.

    Google Scholar 

  22. E. Kissin, V. Shulman, Representations of Krein spaces and derivations of C*-algebras. Pitman Monographs and Surveys in Pure and Applied Mathematics 89 Addison-Vesely Longman, 1997.

    Google Scholar 

  23. M.G. Krein, H. Langer, On the spectral function of a self-adjoint operator in a space with indefinite metric. Dokl. Akad. Nauk SSSR, 152 (1963), 39–42 (Russian).

    MathSciNet  Google Scholar 

  24. S.G. Krein, Yu.I. Petunin, Ye.M. Semyonov, Interpolation of linear operators. Nauka, Moscow, 1978 (Russian).

    Google Scholar 

  25. H. Langer, Spectraltheorie linearer Operatoren in J-räumen und enige Anwendungen auf die Shar L(λ) = λ 2 I+λB+C. Habilitationsschrift, Tech. Univer., Dresden, 1965.

    Google Scholar 

  26. H. Langer, Spectral functions of definitizable operators in Krein space. Lect. Not. Math. 948 (1982), 1–46.

    Article  MATH  Google Scholar 

  27. H. Langer, B. Textorius, L-resolvent matrices of symmetric linear relations with equal defect numbers; applications to canonical differential relations. Integral Equations Operator Theory 5 (1982) No 2, 208–243.

    Article  MathSciNet  MATH  Google Scholar 

  28. S.N. Litvinov, Description of commutative symmetric algebras in the Pontryagin space π1. DAN UzSSR (1987) No 1, 9–12 (Russian).

    MATH  MathSciNet  Google Scholar 

  29. A.I. Loginov, Complete commutative symmetric algebras in Pontryagin spaces π1. Mat. Sbornik 84 (1971) No 4, 575–582 (Russian).

    MATH  MathSciNet  Google Scholar 

  30. M.A. Naimark, On commutative unitary operators in a space πκ. Dokl. Akad. Nauk SSSR 149 (1963), 1261–1263 (Russian).

    MathSciNet  Google Scholar 

  31. M.A. Naimark, On commutative operator algebras in a space π1. Dokl. Akad. Nauk SSSR 156 (1964), 734–737 (Russian).

    MathSciNet  Google Scholar 

  32. M.A. Naimark, Commutative algebras of operators in a space π1. Rev. roum. math. pures et appl. 9 (1964) No 6, 499–529. (Russian)

    MATH  MathSciNet  Google Scholar 

  33. M.A. Naimark, Normed Algebras. Wolters-Nordhoff Publishing, Groningen, The Nedherlands, 1972.

    Google Scholar 

  34. M. Reed, B. Simon Methods of Modern Mathematical Physics. I: Functional Analysis. 2nd Edition, Acad. Press, Inc., 1980.

    Google Scholar 

  35. V.A. Strauss, Some singularities of the spectral function of a π-selfadjoint operator. Collection: Funktsionalnii analiz. Operator Theory, State Pedagogical Institute of Uliyanovsk, Ulyanovsk, USSR (1983), 135–146 (Russian)

    Google Scholar 

  36. V.A. Strauss, A model representation for a simplest π-selfadjoint operator. Collection: Funktsionalnii analiz. Spectral theory, State Pedagogical Institute of Uliyanovsk, Ulyanovsk, USSR (1984), 123–133 (Russian).

    Google Scholar 

  37. V.A. Strauss, Integro-polynomial representation of regular functions of an operator whose spectral function has critical points. Dokl. Akad. Nauk Ukrain. SSR. Ser. A 8 (1986), 26–29 (Russian).

    MathSciNet  Google Scholar 

  38. V.A. Strauss, Functional representation of an algebra genereted by a selfadjoint operator in Pontryagin space. Funktsionalnyi analiz i ego prilozheniya 20 (1986) No 1, 91–92 (Russian), English translation: Funct. Anal. Appl.

    MathSciNet  Google Scholar 

  39. V.A. Strauss, The structure of a family of commuting J-self-adjoint operators Ukrain. Mat.Zh., 41 (1989), No. 10, 1431–1433, 1441 (Russian).

    MathSciNet  Google Scholar 

  40. V.A. Strauss, On models of functional type for a special class of commutative symmetric operator families in Krein spaces. Submitted to Proceedings 4th Workshop Operator Theory in Krein Spaces and Applications, Berlin, 2004.

    Google Scholar 

  41. V.S. Shulman, Symmetric Banach algebras of operators in a space of type π1. Mat. Sb. (N.S.) 89 (1972) No 2, 264–279 (Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Heinz Langer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Strauss, V. (2005). A Functional Description for the Commutative WJ*-algebras of the D + κ -class. In: Langer, M., Luger, A., Woracek, H. (eds) Operator Theory and Indefinite Inner Product Spaces. Operator Theory: Advances and Applications, vol 163. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7516-7_13

Download citation

Publish with us

Policies and ethics