Skip to main content

The Wigner Distribution of Gaussian Weakly Harmonizable Stochastic Processes

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 164))

Abstract

The paper treats the Wigner distribution of scalar-valued stochastic processes defined on ℝd. We show that if the process is Gaussian and weakly harmonizable then a stochastic Wigner distribution is well defined. The special case of stationary processes is studied, in which case the Wigner distribution is weakly stationary in the time variable and the variance is equal to the deterministic Wigner distribution of the covariance function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337–52.

    MATH  MathSciNet  Google Scholar 

  2. R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (11) (1996), 4409–32.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. C. Blei, Fractional Dimensions and Bounded Fractional Forms, Mem. Amer. Math. Soc. 57(331) AMS, 1985.

    Google Scholar 

  4. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, AMS, 1977.

    Google Scholar 

  5. J. L. Doob, Stochastic Processes, Wiley, 1953.

    Google Scholar 

  6. N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York and London, 1958.

    Google Scholar 

  7. H. G. Feichtinger and W. Hörmann, Harmonic analysis of generalized stochastic processes on locally compact Abelian groups, Preprint, 1989.

    Google Scholar 

  8. P. Flandrin, Time-Frequency/Time-Scale Analysis, Academic Press, 1999.

    Google Scholar 

  9. G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, 1989.

    Google Scholar 

  10. C. C. Graham and B. M. Schreiber, Bimeasures algebra on LCA groups, Pacific Journal of Math. 115(1) (1984), 91–127.

    MathSciNet  Google Scholar 

  11. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, 2001.

    Google Scholar 

  12. W. Hörmann, Generalized Stochastic Processes and Wigner Distribution, Ph.D. Thesis, Universität Wien, 1989.

    Google Scholar 

  13. S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997.

    Google Scholar 

  14. A. J. E. M. Janssen, Application of the Wigner Distribution to Harmonic Analysis of Generalized Stochastic Processes, Mathematical Centre Tracts 114, Mathematisch Centrum, Amsterdam, 1979.

    Google Scholar 

  15. Y. Kakihara, Multidimensional Second Order Stochastic Processes, World Scientific, 1997.

    Google Scholar 

  16. Y. Katznelson, An Introduction to Harmonic Analysis, Dover, 1976.

    Google Scholar 

  17. B. Keville, Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups, Ph.D. Thesis, University of Dublin, 2003.

    Google Scholar 

  18. W. Martin, Time-frequency analysis of random signals, Proc. ICASSP, (1982), 1325–1328.

    Google Scholar 

  19. K. S. Miller, Complex Stochastic Processes, Addison-Wesley, 1974.

    Google Scholar 

  20. M. Morse and W. Transue, C-bimeasures and their superior integrals Λ?, Rend. Circolo Mat. Palermo 2(4) (1955), 270–300.

    MathSciNet  Google Scholar 

  21. M. Morse and W. Transue, C-bimeasures and their integral extensions, Ann. Math. 64, (1956), 480–504.

    MathSciNet  Google Scholar 

  22. M. M. Rao, Harmonizable processes: structure theory, L’Enseign. Math. 28 (1982), 295–351.

    MATH  Google Scholar 

  23. E. Thomas, L’integration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191.

    MATH  Google Scholar 

  24. P. Wahlberg, The random Wigner distribution of Gaussian stochastic processes with covariance in S0(ℝ2d), J. Funct. Spaces Appl. 3 (2005), 163–181.

    MATH  MathSciNet  Google Scholar 

  25. K. Ylinen, On vector bimeasures, Ann. Mat. Pura Appl. 117 (1978), 119–138.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Wahlberg, P. (2006). The Wigner Distribution of Gaussian Weakly Harmonizable Stochastic Processes. In: Boggiatto, P., Rodino, L., Toft, J., Wong, M.W. (eds) Pseudo-Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol 164. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7514-0_15

Download citation

Publish with us

Policies and ethics